精英家教网 > 初中数学 > 题目详情

令x=0.123456789101112…998999,其中的数字是由依次写下正整数1~999得到的.则小数点右边第2012个数字是


  1. A.
    0
  2. B.
    4
  3. C.
    5
  4. D.
    6
A
分析:首先确定一位数,以及二位数的个数,判断排x的右边第2012个数字是第几个三位数的数字,从而确定.
解答:从1到9都是一位数,共有9个;
从10到99共有100个数,都是二位数,则数字是由依次写下正整数1~99是x的前9+200=209位数;
则以后是三位数,2012-209=1803,1803÷3=601,
则最后一位是从100开始的三位数的第601个数,即600的最后一位,是0.
故选A.
点评:本题考查了数字的变化规律,正确确定第2012个数字是第几个三位数的数字是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有
 
名学生“不知道”.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A、B两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.
成本(元/个) 售价(元/个)
A 2 2.3
B 3 3.5
(1)求出y与x的函数关系式;
(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知
13x+5y+9z=9.25---(1)
2x+4y+3z=3.20----(2)

视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视x为常数,依题意得
5y+9z=9.25-13x---(3)
4y+3z=3.20-2x----(4)

解这个关于y、z的二元一次方程组得
y=0.05+x
z=1-2x

于是x+y+z=x+0.05+x+1-2x=1.05.
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组,解答方法同上,你不妨试试.
分析:视x+y+z为整体,由(1)、(2)恒等变形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方
程组
5a+4b=9.25---(5)
4a-b=3.20----(6)

由⑤+4×⑥,得21a+22.05,a=1.05.
评注:运用整体的思想方法指导解题.视x+y+z,2x+z为整体,令a=x+y+z,b=2x+z,代入①、②将原方程组转化为关于a、b的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
精英家教网
那么,购买每种教学用具各一件共需多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平南县二模)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012=
52013-1
4
52013-1
4

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并解决有关问题:我们知道:|x|=
-x(当x<0时)
0(当x=0时)
x(当x>0时)
,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x-3|=8时,可令x+1=0和2x-3=0,分别求得x=-1和
3
2
,(称-1和
3
2
分别为|x+1|和|2x-3|的零点值),在实数范围内,零点值x=-1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<-1②-1≤x<
3
2
x≥
3
2
,从而解方程|x+1|+|2x-3|=8可分以下三种情况:
①当x<-1时,原方程可化为-(x+1)-(2x-3)=8,解得x=-2.
②当-1≤x<
3
2
时,原方程可化为(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③当x≥
3
2
时,原方程可化为(x+1)+(2x-3)=8,解得x=
10
3

综上所述,方程|x+1|+|2x-3|=8的解为,x=-2和x=
10
3

通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x-1|的零点值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

同步练习册答案