精英家教网 > 初中数学 > 题目详情

数学公式+数学公式=数学公式,求A,B的值.

解:∵+==
∴A(x+2)+B(x-5)=5x-4,
整理得:(A+B)x+2A-5B=5x-4,
∴A+B=5,2A-5B=-4,
解得:A=3,B=2.
分析:已知等式左边两项通分并利用同分母分式的加法法则计算,根据多项式相等的条件即可求出A与B.
点评:此题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度???为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在平面直角坐标中,Rt△OAB的两顶点A,B分别在y轴,x轴的正半轴上,点O是原点.其中点A(0,3),B(4,0),OC是Rt△OAB的高,点P以每秒1个单位长的速度在线段OB上由点O向点B运动(与端点不重合),过点P作PD⊥AP交AB于点D,设运动时间为t秒.
(1)若△AOE的面积为
3
2
,求点E的坐标;
(2)求证:△AOE∽△PBD;
(3)△PBD能否是等腰三角形?若能,求出此时t的值;若不能,请说明理由;
(4)当t=3时,直接写出此时
AE
EP
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,AB=AC=2,∠A=90°,现取一块等腰直角三角板,将45°角的顶点放在斜边BC的中点O处,三角板的直角边与线段AB、AC分别交于点E、点F,设BE=x,CF=y,∠BOE=α(45°≤α≤90°).
(1)试求y与x的函数关系式,并写出x的取值范围.
(2)试判断∠BEO与∠OEF的大小关系?并说明理由.
(3)在三角板绕O点旋转的过程中,△OEF能否成为等腰三角形?若能,求出对应x的值;若不能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在图中,把一副直角三角板ABC和EFG(其短直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕点O顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的
116
?若存在,求出此时x的值;若不存在,说明理由.
精英家教网

查看答案和解析>>

同步练习册答案