精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠C=90度.以BC为直径作⊙O与斜边AB交于点D,且AD=3.2cm,BD=1.8cm,则AC=______cm.
∵BC是⊙O的直径,AC⊥BC,
∴AC是⊙O的切线,且切点为C;
由切割线定理,得:AC2=AD•AB,
∵AD=3.2cm,BD=1.8cm,AB=5cm,
∴AC2=3.2×5=16,即AC=4cm.
故答案为:4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为
5
过C作⊙A的切线交x轴于点B.
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径所作的圆与斜边AB有两个交点,则R的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线.
(2)若AD=1,PB=BO,求弦AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知PAB、PCD为⊙O的两条割线,PA=8,AB=10,CD=7,∠P=60°,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰△ABC中,AB=AC=13,BC=10,以AC为直径作⊙O交BC于点D,交AB于点G,过点D作⊙O的切线交AB于点E,交AC的延长线与点F.
(1)求证:EF⊥AB;
(2)求cos∠F的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求
BC
的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平行四边形ABCD的对角线AC,BD交于点P,E为BC的中点,过E点的圆O与BD相切于点P,圆O与直线AC,BC分别交于点F,G.
(1)求证:△PCD△EPF;
(2)如果AB=AD,AC=6,BD=8(如图2).求圆O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA中点,连接PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连接DF交AB于点G,则PE的长为______.

查看答案和解析>>

同步练习册答案