精英家教网 > 初中数学 > 题目详情
如图在平面直角坐标系中,矩形OABC的边OC=6,对角线OB所在直线的函数解析式y=
3
4
x

(1)直接写出C点的坐标;
(2)若D是BC边上的点,过D作DE⊥OB于E,已知DE=3.6.
①求出CD的长;
②以点C为圆心,CD长为半径作⊙C、试问在对角线OB上是否存在点P,使得以点P为圆心的⊙P与⊙C、x轴都相切?若存在,求出点P的坐标;若不存在,请说明理由.
(1)C(0,6);

(2)①在矩形OABC中,∠OCB=90°,
∵OA=BC=8;
OB=
OC2+BC2
=10

在△COB和△EDB中,∠CBO=∠EBD,∠OCB=90°=∠DEB,
∴△COB△EDB,
DE
OC
=
BD
BO

CD=2;
②如图,过P作PM⊥OA于M、PN⊥OC于N,设点P横坐标为m,
∵点P在直线y=
3
4
x
上,
∴OM=NP=m,ON=MP=
3
4
m

CN=6-
3
4
m

当⊙P与⊙C外切、与x轴相切时,PC=
3
4
m
+2,
在Rt△PCN中,PN2+CN2=PC2m2+(6-
3
4
m)2=(
3
4
m+2)2

∴m2-12m+32=0,
解得m1=4,m2=8,
∴P1(4,3),P2(8,6),
同理,当⊙P与⊙C内切、与x轴相切时,m2+(6-
3
4
m)2=(
3
4
m-2)2
m2-6m+32=0,
∵△=62-4×1×32<0,
∴此一元二次方程没有实数解,
使⊙P与⊙C内切、与x轴相切的点P不存在.
∴符合条件的点P是P1(4,3),P2(8,6).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点O′,
(1)求证:四边形OAO′B是菱形;
(2)当点O′落在⊙O上时,求b的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O的直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连接BC、BA,过点C作CD⊥AB于D、设CB的长为x,CD的长为y.
(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;
(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;
(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l1、l2、l3…ln同垂直于x轴,垂足依次为(1,0)(2,0)(3,0)(4,0)…(n,0)函数y=x分别相交于A1、A2、A3…A;函数y=2x分别与直线l1、l2、l3…ln相交于B1、B2、B3…Bn,如果△A1OB1的面积为S1,四边形A1A2B2B1的面积记为S2,四边形A2A3B3B2的面积记为S3…,四边形An-1AnBnBn-1的面积记为Sn,那么S1=______,S1+S2+S3+…+S10=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:
(1)在前2小时的挖掘中,甲队的挖掘速度为______米/小时,乙队的挖掘速度为______米/小时;
(2)①当2≤x≤6时,求出y与x之间的函数关系式;
②开挖几小时后,甲队所挖掘隧道的长度开始超过乙队?
(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/小时,结果两队同时完成了任务.问甲队从开挖到完工所挖隧道的总长度为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在x轴正半轴上以OB为斜边、BC为直角边向第一象限分别作等腰Rt△AOB和Rt△CDB. OA=8,BC=4,在∠ABD内有一半径为1,且与AB、BD相切的⊙P.
(1)写出⊙P的圆心坐标;
(2)若△CDB在x轴上以每秒2个单位的速度向左匀速平移,⊙P同时相应在BA和BD上滑动,且保持与BA、BD相切,至⊙P终止运动.设运动时间为t秒,试用含t的代数式表示P点坐标;并证明P点的横、纵坐标之和为定值;
(3)如图2,过D点作x轴的平行线交AB于E,D’B’与AB交于M,在满足(2)的前提下,t取何值时,⊙P可成为△D’EM的内切圆;如果⊙P与DE相切于点F,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知下面的计算程序.则y与x之间的函数关系式为______.

查看答案和解析>>

同步练习册答案