精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知抛物线y=-x2+bx+c过点C,与x轴交于A,B两点,与y轴交于D点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为M,求四边形ABMD的面积;
(3)设点P(m1,n1),Q(m2,n2)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.
分析:(1)根据函数图象知,抛物线经过(3,8)、(0,5)两点,可将它们代入抛物线的解析式中,即可求得待定系数的值.
(2)由于四边形ADMB不规则,所以它们的面积需要转换为其他规则图形的面积来解,设抛物线对称轴与x轴的交点为E,那么四边形ADMB的面积可分为:△AOD、梯形ODME、△BME三部分,A、B、M的坐标易得,根据各图形的面积计算方法,即可求得四边形ABMD的面积.
(3)由于P、Q关于抛物线的对称轴对称,那么m1+m2应该等于E点横坐标的2倍,由此得解.
解答:解:(1)∵抛物线y=-x2+bx+c过点D(0,5),C(3,8)
可得
8=-9+3b+c
5=c

解得
b=4
c=5

∴抛物线的解析式为y=-x2+4x+5.(3分)

(2)∵y=-x2+4x+5=-(x-2)2+9,
∴其顶点坐标为M(2,9);精英家教网
令y=0,即-x2+4x+5=0,
解得,x1=-1,x2=5;
∴A(-1,0),B(5,0);(5分)
设对称轴与x轴的交点为E,
∴四边形ABMD的面积=S△ADO+S梯形ODME+S△MEB
=
1
2
AO•DO+
1
2
(DO+ME)•EO+
1
2
BE•ME
=
1
2
×1×5
+
1
2
×(5+9)
×2+
1
2
×3×9=30.(8分)

(3)易知抛物线的对称轴为x=2,
故E(2,0);
已知P、Q关于抛物线的对称轴对称,
∴m1+m2=4.(9分)
点评:此题考查了抛物线解析式的确定、顶点坐标以及函数图象与坐标轴交点坐标的求法、图形面积的求法等知识,属于基础题,需要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案