精英家教网 > 初中数学 > 题目详情
如图1,在正方形ABOC中,BD平分∠OBC,交OA于点D.
(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:
①BC的长为
 
;②DE的长为
 
;③根据已知及求得的线段OB、BC、DE的长,请找出它们的数量关系?
(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当B1E=6,C1E=4时,求直线B1D的解析式.
精英家教网
分析:(1)①根据正方形的性质即可求得对角线BC的长;②BD平分∠OBC,经计算可知△ABD为等腰三角形,所以可知道AD长度,即可求得DE长度;③经计算可知线段OB、BC、DE的长的关系为OB=
1
2
BC+DE

(2)猜想线段OB、B1C1、DE的长的关系为OB=
1
2
B1C1+DE
,利用相似三角形即可证明;
(3)根据(2)中条件求出点D和点的B1坐标,代入即可求出直线B1D的解析式.
解答:解:(1)①2
2
;(1分)
2-
2
;(3分)
③线段OB、BC、DE的长的关系为OB=
1
2
BC+DE
(5分)
注:只要符合三条线段长度关系的式子都对.

(2)猜想线段OB、B1C1、DE的长的关系为OB=
1
2
B1C1+DE
.(6分)
证明如下:过点D作DF⊥OB于F.
∵∠BAC=∠B1AC1=90°,
∴∠B1AB=∠C1AC.
又∵AB=AC,∠B1BA=∠C1CA=90°,
∴△B1BA≌△C1CA(ASA),(7分)
∴B1A=C1A,
∴AB1=
2
2
B1C1
∵∠B1DA=∠AOB+∠OB1D=45°+∠OB1D,
∠DB1A=∠DB1C1+∠AB1C1=45°+∠DB1C1
∵∠OB1D=∠DB1C1
∴∠B1DA=∠DB1A,
∴AD=AB1=
2
2
B1C1(8分)
∴OD=
2
DF=
2
DE且AO=
2
OB,
∴AD+OD=
2
OB,
2
2
B1C1+
2
DE=
2
OB,
∴OB=
1
2
B1C1+DE.

(3)∵B1E=6,C1E=4,精英家教网
∴B1C1=10.
由(2)得OB=5+DE=5+DF,(10分)
∴BF=5.
∵B1F=B1E=6,
∴B1B=1,AB1=5
2

∴AB=OB=
(5
2
)
2
-12
=7,
∴DE=2.
∴D的坐标为(2,2),B1的坐标为(0,8),(11分)
∴直线B1D的解析式y=-3x+8.(12分)
点评:本题主要考查对于一次函数的综合应用以及相似三角形的掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、把正方形OFGE纸板按如图①方式放置在正方形纸板ABCD上,顶点G在对角线AC,并把正方形OFGE绕顶点A沿逆时针方向旋转,旋转角为а.
(1)如图②,当а=90°时,请直接写出线段DE与BF的数量关系和位置关系;
(2)如图③,当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请举例说明;
(3)如图④,将图①、图③中的两个正方形都改为矩形,其他条件不变,设AB=kAD(k>0),当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请写出改变后的新结论,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=
 
度;
(2)如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此为部分条件,精英家教网构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图1,在正方形ABCD中,若点E是△DBC内的一点,且DE=DC,BE=CE.
(1)连接AE.说明△ABE≌△DCE的理由;
(2)求∠BDE与∠CDE度数的比值;
(3)拓展探索:若只将题中的条件“正方形ABCD”换成条件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如图2,研究∠BDE与∠CDE度数的比值是否与(2)中的结论相同,写出你的研究结果并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)求证:EF+
1
2
AC=AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1
1
2
A1C1与AB三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

课本练习拓展:
(1)如图1,在正方形ABCD中,E是BC上的一点,△ABE经过旋转后得到△ADF,
①旋转中心是点
A
A
;旋转角度最少是
90
90
度.
②爱动脑筋的小兵,在CD边上取点H使得∠HAE=45°,他发现:HE=BE+HD,他的发现正确吗?请你判断并说明理由.
(2)思维闯关:
如图2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一点,且∠DCE=45°,BE=2,则DE的长=
5
5
.(小兵运用解答(1)中所积累的经验和知识做出了该题)
(3)动手闯过:
①小明有一块如图3所示的纸片,其中∠A=∠C=90°,AB=AD.小明请小兵只剪一刀后把它拼成正方形,请你帮助小兵在图中画出剪拼得示意图.
②小兵好朋友小红现有两块同小明一样的纸片,如图4,小兵能否在每块上各剪一刀,然后拼成一个大的正方形?若能,请你画出剪法和拼法的示意图;若不能,简要说明理由.

查看答案和解析>>

同步练习册答案