精英家教网 > 初中数学 > 题目详情
如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-精英家教网2|+(b-3)2=0,(c-4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限内有一点P(m,
12
),请用含m的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
分析:(1)用非负数的性质求解;
(2)把四边形ABOP的面积看成两个三角形面积和,用m来表示;
(3)△ABC可求,是已知量,根据题意,方程即可.
解答:解:(1)由已知|a-2|+(b-3)2=0,(c-4)2≤0及(c-4)2≥0可得:a=2,b=3,c=4;

(2)∵S△ABO=
1
2
×2×3=3,S△APO=
1
2
×2×(-m)=-m,
∴S四边形ABOP=S△ABO+S△APO=3+(-m)=3-m

(3)因为S△ABC=
1
2
×4×3=6,
若S四边形ABOP=S△ABC=3-m=6,则m=-3,
所以存在点P(-3,
1
2
)使S四边形ABOP=S△ABC
点评:本题考查了非负数的性质,三角形及四边形面积的求法,根据题意容易解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:044

数学课上,老师出示图和下面条件:

如图,在直角坐标平面内,O为坐标原点,A点坐标为(1,0),点B在x轴上且在点A的右侧,AB=OA.过点A和B作x轴的垂线,分别交二次函数y=x2的图像于点C和D.直线OC交BD于点M,直线CD交y轴于点H.记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH

同学发现两个结论:①S△CMD∶S梯形ABMC=2∶3;②数值相等关系:xC·xD=-yH

(1)请你验证结论①和结论②成立;

(2)请你研究:如果将上述条件“A点坐标为(1,0)”改为“A点坐标为(t,0)(t>0)”,其他条件不变,结论①是否仍成立?(请说明理由)

(3)进一步研究:如果将上述条件“A点坐标为(1,0)”改为“A点坐标为(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD和yH有怎样的数值关系?(写出结果并说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省盐城市建湖县上冈实验初中中考数学模拟试卷(解析版) 题型:解答题

如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

同步练习册答案