精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;
③2OH+DH=BD;④BG=数学公式DG;⑤数学公式
其中正确的结论是


  1. A.
    ①②③
  2. B.
    ①②④
  3. C.
    ①②⑤
  4. D.
    ②④⑤
C
分析:①利用正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和与外角求得判定即可;
②由三角形的全等判定与性质,以及三角形的内角和求出判定即可;
③直接由图形判定即可;
④由特殊角的直角三角形的边角关系判定即可;
⑤两个三角形的底相同,由高的比进行判定即可.
解答:解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;
②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;
③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;
④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;
⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为x+x)和△BCG的高为x,因此S△BCE:S△BCG=x+x):x=,此结论正确;
故正确的结论有①②⑤.
故选C.
点评:此题考查了正方形的性质,等腰三角形的性质,等边三角形的性质,三角形全等的判定与性质,三角形的面积,特殊角的三角函数等知识点,学生需要有比较强的综合知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案