【题目】如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.
(1)求k的值;
(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.
【答案】(1)6;(2)E(4,0)或E(6,0).
【解析】试题分析:(1)过点M作MC⊥x轴于点C,MD⊥y轴于点D,根据AAS证明△AMC≌△BMD,那么S四边形OCMD=S四边形OAMB=6,根据反比例函数比例系数k的几何意义得出k=6;
(2)先根据反比例函数图象上点的坐标特征求得点P的坐标为(3,2).再分两种情况进行讨论:①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.根据AAS证明△PGE≌△FHP,进而求出E点坐标;②如图3,同理求出E点坐标.
试题解析:(1)如图1,过点M作MC⊥x轴于点C,MD⊥y轴于点D,
则∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,
∴△AMC≌△BMD,
∴S四边形OCMD=S四边形OAMB=6,
∴k=6;
(2)存在点E,使得PE=PF.
由题意,得点P的坐标为(3,2).
①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3-2=1,GE=HP=2-1=1,
∴OE=OG+GE=3+1=4,
∴E(4,0);
②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3+2=5,GE=HP=5-2=3,
∴OE=OG+GE=3+3=6,
∴E(6,0).
科目:初中数学 来源: 题型:
【题目】下列调查中,最适合采用抽样调查的是( )
A. 对旅客上飞机前的安检 B. 了解全班同学每周体育锻炼的时间
C. 选出某校短跑最快的学生参加全市比赛 D. 了解某批次灯泡的使用寿命情况
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2=( );a2-b2=( )
A. 22、-6 B. -22、6 C. 6、-22 D. -6、22
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com