精英家教网 > 初中数学 > 题目详情
如图(1),△ABC和△ECD都是等边三角形,△ECB可以看做是△DAC经过平移、轴对称或旋转得到.
(1)说明得到△EBC的过程;
(2)如图(2),连接P、Q,求证:△PCQ为等边三角形.
分析:(1)△EBC与△DAC全等,△CDA可绕点C逆时针旋转得到△EBC.
(2)首先证明△ACQ≌△BCP可得CP=CQ,再计算出∠ACE=60°,可根据有一个角等于60°的等腰三角形是等边三角形得到结论.
解答:解:(1)∵△ECD是等边三角形,
∴CD=CE,∠DCE=60°,
同理CA=CB,∠ACB=60°
∴以点C为旋转中心将△DAC逆时针旋转60°就得到△EBC;

(2)∵△BCE≌△ACD,
∴∠CAD=∠CBE,
∵∠BCA=∠DCE=60°,
∴∠ACE=180°-60°-60°=60°,
在△AQC和△BPC中,
∠CAQ=∠CBP
∠ACQ=∠BCP
AC=BC

∴△ACQ≌△BCP(AAS),
∴CP=CQ,
∴△CPQ是等边三角形.
点评:此题考查了全等三角形的判定与性质,以及等边三角形的判定与性质,图形的旋转,关键是掌握证明三角形全等的判定方法SSS、SAS、AAS、ASA.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边三角形ABC中,D、E分别是BC、AC上的点,且AE=CD.
(1)求证:AD=BE;
(2)求:∠BFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰直角△ABC中,∠ABC=90°,AB=BC,AD∥BC,E是AB的中点,BE=AD.
(1)试说明:CE⊥BD;
(2)线段AC与ED之间存在什么关系?为什么?
(3)判断△BDC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,△DEF是由△ABC平移得到的,若BC=6cm,E是BC的中点,则平移的距离是
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边且在CD的下精英家教网方作等边△CDE,连接BE.
(1)填空:当点D运动到点M时,∠ACE=
 
度;
(2)当点D在线段AM上(点D不运动到点A)时,求证:△ADC≌△BEC;
(3)若AB=8,以点C为圆心,以5为半径作⊙C与直线BE相交于点P、Q两点,在点D运动的过程中(点D与点A重合除外),试求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,阴影部分四边形OFCG的面积是△ABC的面积的
 

查看答案和解析>>

同步练习册答案