精英家教网 > 初中数学 > 题目详情
(2011•新华区一模)如图,在直角梯形ABCD中,∠A=90°,AD=4,CD=3,BC=5,点E从A点出发以每秒2个单位长的速度向B点运动,点F从C点同时出发,以每秒1个单位长的速度向D点运动.设运动时间为t秒,当一个动点到达终点时,另一个动点也随之停止运动,过点F作FH⊥AB于点P,连接BD交FP于点O,连接OE.
(1)底边AB=
6
6

(2)设△BOE的面积为S△BOE
①求S△BOE与时间t的函数关系式;
②当t为何值时,S△BOE=
16
S梯形ABCD
(3)是否存在点E,使得△BOE为直角三角形;若存在,求出t的值;若不存在,请说明理由;
(4)是否存在某一时刻,使得OE∥BC?若存在,直接写出t的值;若不存在,请说明理由.
分析:(1)过点C作CH⊥AB于H,利用已知条件和勾股定理即可求出AB的值;
(2)①经过t秒时,AE=2t,CF=t,则BE=6-2t,DF=3-t,证明△ODF∽△DBA,利用相似的性质可求出OF的长,进而求出OP的长,再利用三角形面积公式即可求出△BOE的面积;②利用已知条件求出梯形ABCD的面积,有①可得关于t的一元二次方程,求出符合题意的t值即可;
(3)设经过t秒时,△BOE为直角三角形,在分当∠BOE=90°和∠OEB=90°时讨论求出符合题意的t值即可;
(4)当OE∥BC时易证△EOB∽△CBD和△OBP∽△DBA,利用相似的性质:对应边的比值相等即可求出符合题意的t值.
解答:解:(1)过点C作CH⊥AB于H,
∵∠A=90°,AD=4,CD=3,BC=5,
∴CH=4,CD=AH=3,
∴BH=
5 2-42
=3,
∴AB=3+3=6,
故答案为6;

(2)①经过t秒时,AE=2t,CF=t,则BE=6-2t,DF=3-t,
∵AB∥DC,
∴∠ODF=∠DBA,
∵FP⊥AB,
∴FP⊥CD,
∴∠DFO=∠A=90°,
∴△ODF∽△DBA,
OF
DA
=
DF
AB

OF
4
=
3-t
6
,OF=2-
2
3
t.
∴OP=FP-OF=4-(2-
2
3
t)=2+
2
3
t,
∴S△BOE=
1
2
BE•OP=
1
2
(6-2t)(2+
2
3
t)=-
2
3
t2+6;
②∵S梯形ABCD=
1
2
(CD+AB)•AD=
1
2
(3+6)×4=18.
  S△BOE=
1
6
S梯形ABCD,即-
2
3
t2+6=
1
6
×18,
解得t=
3
2
2
或t=
3
2


(3)存在.
设经过t秒时,△BOE为直角三角形.
①若∠BOE=90°,则AE<AP,
∵AP=DF,
∴2t<3-t.解得t<1,
∴EP=AP-AE=3-t-2t=3-3t,BP=AB-AP=6-(3-t)=3+t.
∵∠EOP+∠BOP=90°,∠OBP+∠BOP=90°,
∴∠EOP=∠OBP,
∵∠OPE=∠BPO=90°,
∴△EOP∽△OBP,
OP
BP
=
EP
OP
,OP2=BP•EP.
∴(2+
2
3
t)2=(3+t)(3-3t),
解得t=
15
31

②若∠OEB=90°,此时OE与OP重合,
∴AE=AP=DF,
∴2t=3-t,
∴t=1;

(4)存在,t=
9
5

当OE∥BC时,易证△EOB∽△CBD,
BE
CD
=
OB
BD

易证△OBP∽△DBA,
OB
BD
=
OP
DA

BE
CD
=
OP
DA
6-2t
3
=
2+
2
3
t
4

解得t=
9
5
点评:本题考查了直角梯形的性质、勾股定理的运用、三角形的面积公式以及梯形的面积公式、相似三角形的判定和相似三角形的性质、以及分类讨论思想在解几何图形中的应用,题目综合性很强难度不小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•新华区一模)解方程组:
3x+2y=5             ①
5x-4y=1              ②

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•新华区一模)在图中的方格纸中,每个小方格都是边长为1个单位长的正方形,△ABC的3个顶点都在格点上(每个小方格的顶点叫格点).
(1)画出△A1B1C1,使得△A1B1C1与ABC关于直线l对称;
(2)画出ABC绕点O顺时针旋转90°后的A2B2C2,并求点A旋转到A2所经过的路线长;
(3)A1B1C1与A2B2C2
轴对称
轴对称
.(填”中心对称“或”轴对称“)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4

(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5

②在AB上取一点P,可设AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•新华区一模)在矩形ABCD中,E是BC边上的动点(点E不与端点B、C重合),以AE为边,在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上,连接AC、FC,并过点F作FH⊥BC,交BC的延长线于点H.
(1)如图1,当AB=BC时;
①求证:矩形AEFG是正方形;
②猜想AC、FC的位置关系,并证明你的猜想.
(2)如图2,当AB≠BC时,上面的猜想还成立吗?若不成立,请说明理由;若成立,请给出证明.

查看答案和解析>>

同步练习册答案