精英家教网 > 初中数学 > 题目详情
(2013•台州)已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:
①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2
②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2
对于上述的两个判断,下列说法正确的是(  )
分析:根据SSS即可推出△A1B1C1≌△A2B2C2,判断①正确;根据AAA不能推出两三角形全等,即可判断②.
解答:解:∵△A1B1C1,△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2
∴B1C1=B2C2
∴△A1B1C1≌△A2B2C2(SSS),∴①正确;
∵∠A1=∠A2,∠B1=∠B2
∴△A1B1C1∽△A2B2C2
∵△A1B1C1,△A2B2C2的周长相等,
∴△A1B1C1≌△A2B2C2
∴②正确;
故选D.
点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•台州)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台州)已知关于x,y的方程组
mx+ny=7
2mx-3ny=4
的解为
x=1
y=2
,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台州)如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点A,其顶点为B,另一抛物线y=(x-h)2+2-h(h>1)的顶点为D,两抛物线相交于点C.
(1)求点B的坐标,并说明点D在直线l上的理由;
(2)设交点C的横坐标为m.
 ①交点C的纵坐标可以表示为:
(m-1)2+1
(m-1)2+1
(m-h)2-h+2
(m-h)2-h+2
,由此进一步探究m关于h的函数关系式;
 ②如图2,若∠ACD=90°,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=
3
2
,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求
a
s
的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)
依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)

查看答案和解析>>

同步练习册答案