精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.
(1)求证:AC•BC=BE•CD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.
分析:(1)欲证AC•BC=BE•CD,可以证明△ADC∽△ECB得出;
(2)求⊙O的直径BE的长,由AC•BC=BE•CD知,可在Rt△ACD和Rt△BCD中,根据已知条件求出BC,AC的长即可.
解答:精英家教网(1)证明:连接CE(1分)
∵BE是⊙O的直径
∴∠ECB=90°
∵CD⊥AB
∴∠ADC=90°
∴∠ECB=∠ADC
又∵∠A=∠E(同弧所对的圆周角相等),
∴△ADC∽△ECB(2分)
AC
EB
=
DC
CB

∴AC•BC=BE•CD;(1分)

(2)解:∵CD=6,AD=3,BD=8
∴BC=
BD2+CD2
=
82+62
=10(1分)
∴AC=
AD2+CD2
=
32+62
=3
5
(1分)
∵AC•BC=BE•CD
3
5
×10=BE•6
∴BE=5
5

∴⊙O的直径BE的长是5
5
.(2分)
点评:本题考查了同弧所对的圆周角相等、直径所对的圆周角为直角及解直角三角形的知识,同时考查了相似三角形的判定和性质,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,BE是⊙O的直径,CB与⊙O相切于点B,OC∥DE交⊙O于点D,CD的延长线与BE的延长线精英家教网交于A点.
(1)求证:AC是⊙O的切线;
(2)若AD=4,CD=6,求tan∠ADE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,∠AOD=∠APC.
求证:AP是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,∠AOD=∠APC.
(1)求证:AP是⊙O的切线;
(2)若AC=4CO,AP=2
5
,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,BE是⊙O的直径,BC切⊙O于B,弦ED∥OC,连结CD并延长交BE的延长线于点A.
证明:CD是⊙O的切线.

查看答案和解析>>

同步练习册答案