精英家教网 > 初中数学 > 题目详情

设函数数学公式与y=x-1的图象的交点坐标为(a,b),则数学公式的值为________.

-
分析:把A的坐标代入两函数得出ab=3,b-a=-1,把-化成,代入求出即可.
解答:∵函数与y=x-1的图象的交点坐标为(a,b),
∴代入得:b=,b=a-1,
∴ab=3,b-a=-1,
-===-
故答案为:-
点评:本题考查了一次函数与反比例函数的交点问题,解此题的关键是求出ab和b-a的值,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA=OB,过点精英家教网B作y轴的垂线,垂足为D,直线AB的解析式为y=-3x+30,点C在线段BD上,点D关于直线OC的对称点在腰OB上.
(1)求点B坐标;
(2)点P沿折线BC-OC以每秒1个单位的速度运动,当一点停止运动时,另一点也随之停止运动.设△PQC的面积为S,运动时间为t,求S与t的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°-∠AOB时,求t值.(参考数据:在(3)中,
5
11
5
.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1分别交x轴、y轴于A、B两点,且AO=8,BO=8
3
,与直线y=
3
x
交于点C.平行于y轴的直线L2从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l2分别交线段BC、OC、x轴于点D、E、P,以DE为边向左侧作等边△DEF,设直线l2的运动时间为t(秒).
(1)直接写出直线l1的解析式;
(2)以D、E、O、F为顶点的多边形能否为梯形,若能,求出此时t的值;若不能,请说明理由;
(3)设△DEF与△BCO重叠部分的面积为S(平方单位),试探究:S与t的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面坐标系中有一正三角形ABC,A(-8,0)、B(8,0),直线l经过原点O及BC的中点D,另一动直线a平行于y轴,从原点出发,以每秒1个单位长度的速度沿x轴向右平移,直线a分别交线段BC、直线l于点E、F,以EF为边向左侧作等边△EFG,设△EFG与△ABC重叠部分的面积为S(平方单位),当点G落在y轴上时,a停止运动,设直线a的运动时间为t(秒).
(1)直接写出:C点坐标
 
,直线l的解析式:
 

(2)请用含t的代数式表示线段EF;
(3)求出S关于t的函数关系式及t的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+c的图象与x轴交于点A(5,0),与y轴交于点B,过点B作BC⊥y轴,BC与函数y=ax2+bx+c的图象交于点C(2,4).
(1)设函数y=ax2+bx+c的图象与x轴的另一个交点为D,求△BDA的面积.
(2)若P为y轴上的一个动点,连接PA、PC,分别过A、C作PC、PA的平行线交于点Q,连接PQ.试探究:
①是否存在点P,使得PQ2=PA2+PC2?请说明理由.
②是否存在点P,使得PQ取得最小值?若存在,请求出这个最小值,并求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案