精英家教网 > 初中数学 > 题目详情

如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.

解:CF⊥DE,CF平分DE,理由是:
∵AD∥BE,
∴∠A=∠B,
在△ACD和△BEC中

∴△ACD≌△BEC(SAS),
∴DC=CE,
∵CF平分∠DCE,
∴CF⊥DE,CF平分DE(三线合一).
分析:根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.
点评:本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.精英家教网
(1)求线段MN的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C在线段AB上,点M、N分别是AC、BC的中点.精英家教网
(1)若AC=9cm,CB=6cm,求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?
(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度.精英家教网
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律;
(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图,点C在线段AB上,AC=18cm,BC=6cm,点M、N分别是AC、BC的中点,求MN的长;
(2)把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件不变,则MN的长是多少?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点M在线段AB上,MB=4cm,NB=9cm,且N是AM的中点,则AB=
14
14
cm.

查看答案和解析>>

同步练习册答案