精英家教网 > 初中数学 > 题目详情

已知Rt△AOB的两条直角边OA=3,OB=1,分别以OA、OB所在直线为x轴、y轴建立平面直角坐标系,如图所示.先将Rt△AOB绕原点O按顺时针方向旋转90°后,再沿x轴负方向平移1个单位长度得到△CDO.
(1)直接写出点A、C的坐标;
(2)求线段AB扫过的图形的面积.

解:(1)∵Rt△AOB的两条直角边OA=3,OB=1,
∴A点坐标为:(3,0),DO=1,CD=3,
∴C点坐标为:(-1,-3);

(2)如图所示:AB扫过的图形的面积=以AO为半径90°圆心角组成的扇形-以BO为半径90°为圆心角的扇形+S△A′B′O+S△OCA′
=+×1×3+×1×3=2π+3.


分析:(1)利用Rt△AOB的两条直角边OA=3,OB=1,得出DO=1,CD=3,即可得出C点坐标与A点坐标;
(2)利用AB扫过的图形的面积包括以AO为半径90°圆心角组成的扇形-以BO为半径90°为圆心角的扇形+S△A′B′O+S△OCA′,进而得出面积即可.
点评:此题主要考查了坐标与图形的旋转与平移和图形面积求法,解答此题的关键是明确AB扫过的图形的面积包括以AO为半径90°圆心角组成的扇形-以BO为半径90°为圆心角的扇形+S△ABO+S△OCA′
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△AOB的两条直角边OA=3,OB=1,分别以OA、OB所在直线为x轴、y轴建立平面直角坐标系精英家教网,如图所示.先将Rt△AOB绕原点O按顺时针方向旋转90°后,再沿x轴负方向平移1个单位长度得到△CDO.
(1)直接写出点A、C的坐标;
(2)求顶点A所经过的路径总长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•永春县模拟)已知Rt△AOB的两条直角边OA=3,OB=1,分别以OA、OB所在直线为x轴、y轴建立平面直角坐标系,如图所示.先将Rt△AOB绕原点O按顺时针方向旋转90°后,再沿x轴负方向平移1个单位长度得到△CDO.
(1)直接写出点A、C的坐标;
(2)求线段AB扫过的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2-7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标.
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(黑龙江黑河齐齐哈尔大兴安岭鸡西卷)数学(带解析) 题型:解答题

如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业考试(黑龙江黑河、齐齐哈尔,大兴安岭、鸡西卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.

(1)求A、B两点的坐标。

(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.

(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案