精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,AB∥CD,CE∥AD交AB于点E,AC平分∠BAD.
(1)说明:四边形AECD是菱形;
(2)若E是AB的中点,判断△ABC的形状,并说明理由.

(1)证明:∵AB∥CD,CE∥AD,
∴四边形AECD是平行四边形,
∵AC平分∠BAD,
∴∠1=∠2,
∵DC∥AE,
∴∠3=∠2,
∴∠1=∠3,
∴AD=DC,
∴四边形AECD是菱形;

(2)直角三角形.
理由:∵AE=EC,
∴∠2=∠4,
∵AE=EB,
∴EB=EC,
∴∠5=∠B,
又因为三角形内角和为180°,
∴∠2+∠4+∠5+∠B=180°,
∴∠ACB=90°,
∴△ACB为直角三角形.
分析:(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;
(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.
点评:此题主要考查了菱形的判定与性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的四条边都相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案