精英家教网 > 初中数学 > 题目详情
(2010•金华)已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移______个单位.
【答案】分析:(1)将A(2,-3),B(-1,0)代入y=ax2+bx-3,用待定系数法即可求得二次函数的解析式;
(2)利用顶点坐标公式可求出图象沿y轴向上平移的单位.
解答:解:(1)由已知,有,即,解得
∴所求的二次函数的解析式为y=x2-2x-3.

(2)∵-=1,=-4.
∴顶点坐标为(1,-4).
∵二次函数的图象与x轴只有一个交点,
∴应把图象沿y轴向上平移4个单位.
点评:考查利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.二次函数的图象与x轴只有一个交点,即顶点的纵坐标为0.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《四边形》(07)(解析版) 题型:解答题

(2010•金华)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是______.
(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______;
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(06)(解析版) 题型:解答题

(2010•金华)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是______.
(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______;
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省金华市中考数学试卷(解析版) 题型:解答题

(2010•金华)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是______.
(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______;
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省金华市中考数学试卷(解析版) 题型:解答题

(2010•金华)已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移______个单位.

查看答案和解析>>

同步练习册答案