精英家教网 > 初中数学 > 题目详情
观察下列等式:
1-
1
2
=
1
1×2

1
2
-
1
3
=
1
2×3

1
3
-
1
4
=
1
3×4

1
4
-
1
5
=
1
4×5


(1)猜想并写出第n个算式:
 

(2)请说明你写出的等式的正确性;
(3)把上述n个算式的两边分别相加,会得到下面的求和公式吗?请写出具体的推导过程.
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 

(4)我们规定:分子是1,分母是正整数的分数叫做单位分数.任意一个真分数都可以表示成不同的单位分数的和的形式,且有无数多种表示方法.根据上面得出的两个结论,请将真分数
2
3
表示成不同的单位分数的和的形式.(写出一种即可)
分析:从数字上很容易的猜得第n个算式,已知题目中各式相加得到(3),第(4)按照第(3)个得到.
解答:解:(1)
1
n
-
1
n+1
=
1
n(n+1)
;(3分)

(2)左边=
1
n
-
1
n+1
=
n+1
n(n+1)
-
n
n(n+1)
=
n+1-n
n(n+1)
=
1
n(n+1)
=右边,
1
n
-
1
n+1
=
1
n(n+1)
.(3分)

(3)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1

(过程给(3分),结论填对得2分)

(4)
2
3
=
1
2
+
1
6
=
1
2
+
1
7
+
1
42
=
1
2
+
1
7
+
1
43
+
1
1806
,等等;(写出一个即可,3分)
点评:本题规律在于从公式到验证,每一步相加即能消去,便得到(3).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

1
n(n+1)
=
1
n
-
1
n+1

将以上等式相加得到
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=1-
1
n+1

用上述方法计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
其结果为(  )
A、
50
101
B、
49
101
C、
100
101
D、
99
101

查看答案和解析>>

科目:初中数学 来源: 题型:

2、观察下列等式:2=2=1×2;2+4=6=2×3;2+4+6=12=3×4;2+4+6+8=20=4×5;…
(1)可以猜想,从2开始到第n(n为自然数)个连续偶数的和是
n(n+1)

(2)当n=10时,从2开始到第10个连续偶数的和是
110

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…用自然数n将上面式子的一般规律表示为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式,找出规律然后空格处填上具体的数字.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,1+3+5+7+9+11=
 

(1)第5个式子等号右边应填的数是
 

(2)根据规律填空1+3+5+7+9+…+99=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1=12
1+3=22
1+3+5=32
1+3+5+7=42

则1+3+5+…+15=
8
8
2
并请你将想到的规律用含有n(n是正整数)的等式来表示就是:
1+3+5+7+…+(2n-1)=n2
1+3+5+7+…+(2n-1)=n2

查看答案和解析>>

同步练习册答案