精英家教网 > 初中数学 > 题目详情
直线y=kx+b与抛物线y=x2都经过点A、B,且A、B的横坐标分别为-1和3,
求:
(1)这条直线的解析式;
(2)△OAB的面积.
【答案】分析:(1)将A、B两点横坐标代入y=x2中求纵坐标,再利用两点法求直线解析式;
(2)设直线AB与y轴交于C点,根据S△OAB=S△AOC+S△BOC求解.
解答:解:(1)当x=-1时,y=x2=1,当x=3时,y=x2=9,
所以,A(-1,1),B(3,9),
代入直线y=kx+b中,得,解得
所以,直线解析式为y=2x+3,
(2)设直线AB与y轴交于C点,则C(0,3),
所以,S△OAB=S△AOC+S△BOC=×3×1+×3×3=6.
点评:本题考查了二次函数的性质,待定系数法求一次函数解析式.关键是由图象上点的横坐标求纵坐标,利用待定系数法求一次函数解析式,利用割补法求三角形面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知抛物线C1:y=x2-2x的图象如图所示,把C1的图象沿y轴翻折,得到抛物线C2的图象,抛物线C1与抛物线C2的图象合称图象C3
(1)求抛物线C1的顶点A坐标,并画出抛物线C2的图象;
(2)若直线y=kx+b与抛物线y=ax2+bx+c(a≠0)有且只有一个交点时,称直线与抛物线相切.若直线y=x+b与抛物线C1相切,求b的值;
(3)结合图象回答,当直线y=x+b与图象C3有两个交点时,b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E(4,m),请求出△CBE的面积S的值;
(3)在抛物线上求一点P0,使得△ABP0为等腰三角形,并写出P0点的坐标;
附加:(4)除(3)中所求的P0点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点P(要求简要说明理由,但不证明);若不存在这样的点P,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E (4,m),请求出△CBE的面积S的值;
(3)写出二次函数值大于一次函数值的x的取值范围;
(4)在抛物线上是否存在点P使得△ABP为等腰三角形?若存在,请指出一共有几个满足条件的点P,并求出其中一个点的坐标;若不存在这样的点P,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,过点F(0,1)的直线y=kx+b与抛物线y=
14
x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是 M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•西双版纳)如图,抛物线与x轴交于A、B两点,直线y=kx-1与抛物线交于A、C两点,其中A(-1,0),B(3,0),点C的纵坐标为-3.
(1)求k的值;
(2)求抛物线的解析式;
(3)抛物线上是否存在点P,使得△ACP是以AC为底边的等腰三角形?如果存在,写出所有满足条件的点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案