精英家教网 > 初中数学 > 题目详情

平行四边形ABCD中,AB=2BC,E为DC的中点,AE与BC延长相交于点F.求证:∠F=∠FAB.

证明:方法1:∵平行四边形ABCD,
∴AB∥CD,AD∥CB;∴AB=CD,AD=CB.
又E是DC的中点,
∴DE=DC=AB,AD=BC=AB,
∴DE=AD.
∴∠DAE=∠DEA.
由于AD∥BC,
∴∠DAE=∠F、
由于AB∥CD,
∴∠FAB=∠DEA.
因此,∠F=∠FAB.

方法2:
∵平行四边形ABCD,
∴AD=BC,AD∥BC.
∴∠DAF=∠F,
在△AED和△FEC中
∴△AED≌△FEC.
∴AD=CF.
∴BC=CF即BF=2BC.又AB=2BC.
∴AB=BF.
因此,∠F=∠FAB.
分析:方法1、要证∠DAF=∠F,根据平行四边形的性质,和平行线的性质,可证∠DAE=∠DEA,∠DAE=∠F,∠FAB=∠DEA;由等量代换,即证∠F=∠FAB;
方法2.、要证∠DAF=∠F,可证△ABF是等腰三角形,根据平行四边形的性质,和平行线的性质,可证△AED≌△FEC,得AD=CF,BC=CF即BF=2BC.又AB=2BC.
得AB=BF,所以∠DAF=∠F.
点评:本题考查平行四边形的性质的运用,解题关键是利用平行四边形的性质结合三角形全等来解决有关的证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,高h=4,则平行四边形ABCD的面积S=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE:EB=1:2,S△AEF=3,则S△FCD=
27
27

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E是BD上一点,AE的延长线交DC于点F,交BC的延长线于点G.求证:
(1)△ABE∽△FDE;
(2)AE2=EF•EG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:
①BE=DF;②AG=GH=HC;③2EG=BG;④S△ABC=5S△AGE
其中正确的有
①②③④
①②③④
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6
3
,AE=6,求AF的长.

查看答案和解析>>

同步练习册答案