精英家教网 > 初中数学 > 题目详情

如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度数;
(2)试说明OD平分∠AOG.

解:(1)∵AE∥OF,
∴∠FOB=∠A=30°,
∵OF平分∠BOC,
∴∠COF=∠FOB=30°,
∴∠DOF=180°-∠COF=150°;

(2)∵OF⊥OG,
∴∠FOG=90°,
∴∠DOG=∠DOF-∠FOG=150°-90°=60°,
∵∠AOD=∠COB=∠COF+∠FOB=60°,
∴∠AOD=∠DOG,
∴OD平分∠AOG.
分析:(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;
(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.
点评:本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线AB与CD相交于点O,OE、OF分别是∠BOD、∠AOD的平分线.
(1)∠DOE的补角是
∠AOE或∠COE
∠AOE或∠COE

(2)若∠BOD=62°,求∠AOE和∠DOF的度数;
(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度数;
(2)试说明OD平分∠AOG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知射线DM与直线BC交于点A,AB∥DE.
(1)若当∠MAC=100°,∠BCE=120°时,问把EC绕点E再旋转多大角度时,可判定MD∥EC,请你设计出两种方案,并画出草图(旋转后若EC与AB相交,则交点用C′表示).
(2)若将EC绕点E逆时针旋转60°时,点C与点A恰好重合,请画出草图,并在图中找出同位角、内错角各两对(先用数字标出角,再回答).

查看答案和解析>>

科目:初中数学 来源:2011-2012学年河南漯河市直中学七年级下期中联合测试数学试卷(带解析) 题型:解答题

如图,已知射线DM与直线BC交于点AABDE.

(1)若当时,问把EC绕点E再旋转多大角度时,可判定MDEC,请你设计出两种方案,并画出草图(旋转后若ECAB相交,则交点用表示).
(2)若将EC绕点E逆时针旋转时,点C与点A恰好重合,请画出草图,并在图中找出同位角、内错角各两对(先用数字标出角,再回答).

查看答案和解析>>

同步练习册答案