精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,函数的图象是第一、三象限的角平分线.

(1)实验与探究:由图观察易知A(0,2)关于直线的对称点的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线的对称点的位置,并写出它们的坐标:                       
(2)归纳与发现:结合图形观察以上三组点的坐标,
你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线的对称点的坐标为           .

(1) B′(3,5),C′(5,)   (2) (n,m)

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社。经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费。假设这两位家长带领名学生去旅行,甲、乙旅行社的收费分别为
(1)、写出的函数关系式。
(2)、学生人数在什么情况下,选择甲旅行社更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y=kx+b(k≠ 0)与反比例函数(m≠0)的图象有公共点A(1,2),D(a,-1).直线 轴于点N(3,0),与一次函数和反比例 函数的图象分别交于点B,C.

(1) 求一次函数与反比例函数的解析式;
(2) 求△ABC的面积。
(3) 根据图象回答,在什么范围时,一次函数的值大于反比例函数的值。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB——BC——CD所示(不包括端点A).

(1)当100<x<200时,直接写y与x之间的函数关系式.
(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数
(1)为何值时,它的图象经过原点;
(2)为何值时,它的图象经过点(0,).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知反比例函数(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).

(1)求一次函数的关系式;
(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=(O为坐标原点),求反比例函数的关系式;
(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

“母亲节”到了,八年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.
(1)求同学们卖出鲜花的销售额(元)与销售量(支)之间的函数关系式;
(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金(元)与销售量(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额-成本)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设原点为O,△OPA的面积为S.
(1)求S与x的函数关系式,写出x的取值范围,画出这个函数图象;
(2)当S=12时,求点P的坐标;
(3)△OPA的面积能大于40吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。某日王老板进货A款式服装35件,B款式服装25件。怎样分配给每个店铺各30件服装,使得在保证乙店铺毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?

查看答案和解析>>

同步练习册答案