精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,AB=AD,∠BAD=90°,∠CBD=30°,∠BCD=45°,若AB=2数学公式.求四边形ABCD的面积.

解:如图,过点D作DE⊥BC于E,
∵AB=AD,∠BAD=90°,
∴AD=AB=2
BD=2×=4,
∵∠CBD=30°,
∴DE=BD=×4=2,
BE===2
∵∠BCD=45°,
∴CE=DE=2,
∴BC=BE+CE=2+2,
∴四边形ABCD的面积=S△ABD+S△BCD=×2×2+×(2+2)×2,
=4+2+2,
=2+6.
分析:过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用勾股定理列式求出BE,判断出△CDE是等腰直角三角形,然后求出CE的长,再根据三角形的面积公式列式进行计算即可得解.
点评:本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,等腰直角三角形的性质,作辅助线,把△BCD分成两个直角三角形是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案