精英家教网 > 初中数学 > 题目详情

当________时,抛物线y=(m-8)x2-2(m-4)x+2+m与x轴有两个交点.

m<16且m≠8
分析:由于抛物线y=(m-8)x2-2(m-4)x+2+m与x轴有两个交点,由此可以得到抛物线二次项系数不等于0,并且判别式是非负数,由此可以得到关于m的不等式组,解不等式组即可求出m的取值范围.
解答:∵抛物线y=(m-8)x2-2(m-4)x+2+m与x轴有两个交点,
∴(m-8)x2-2(m-4)x+2+m=0有两个不相等的实数根,
即△=[-2(m-4)]2-4(m-8)(2+m)>0,且m-8≠0,
∴m<16且m≠8.
点评:二次函数和一元二次方程有以下关系:
①方程有两个不相等的实数根,△>0,二次函数的图象与x轴有两个交点;
②方程有两个相等的实数根,△=0,二次函数的图象与x轴有1个交点;
③方程没有实数根,△<0,二次函数的图象与x轴没有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

当a<0时,抛物线y=x2+2ax+1+2a2的顶点在(  )
A、第一象限B、第二象限C、第三象限D、第四象限

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

二次函数y=ax2+bx+c中系数应满足________,其图象是________,它的开口方向由________来确定。当________时,开口向上。当________时,开口向下,对称轴方程为________;当________时,对称轴在y轴的左侧;当________,对称轴在y轴右侧,顶点坐标为________;当________时,抛物线与x轴有两个不同的交点;当________时,抛物线的顶点在x轴上;当________时,函数值y总是负值。

 

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

二次函数y=ax2+bx+c中系数应满足________,其图象是________,它的开口方向由________来确定。当________时,开口向上。当________时,开口向下,对称轴方程为________;当________时,对称轴在y轴的左侧;当________时,对称轴在y轴的右侧,顶点坐标为________;当________时,抛物线与x轴有两个不同的交点;当________时,抛物的顶点在x轴上;当________时,函数值y总是负值。

 

查看答案和解析>>

科目:初中数学 来源:《第27章 二次函数》2009年单元检测试卷(1)(解析版) 题型:填空题

    时,抛物线y=(m-8)x2-2(m-4)x+2+m与x轴有两个交点.

查看答案和解析>>

同步练习册答案