精英家教网 > 初中数学 > 题目详情

用两种正多边形拼地板,其中的一种是正八边形,则另一种正多边形的边数是


  1. A.
    正五边形
  2. B.
    正六边形
  3. C.
    正三角形
  4. D.
    正四边形
D
分析:正八边形的每个内角为:180°-360°÷8=135°,分别计算出正五边形,正六边形,正三角形,正四边形的每个内角的度数.利用“围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角”作为相等关系列出多边形个数之间的数量关系,利用多边形的个数都是正整数可推断出能和正八边形一起密铺的多边形是正四边形.
解答:正八边形的每个内角为180°-360°÷8=135°,
A、正五边形每个内角是180°-360°÷5=108°,得108m+135n=360°,m取任何正整数时,n不能得正整数,故不能铺满;
B、正六边形的每个内角是120度,得135m+120n=360°,n=3-m,显然m取任何正整数时,n不能得正整数,故不能铺满;
C、正三角形的每个内角60°,得135m+60n=360°,n=6-m,显然m取任何正整数时,n不能得正整数,故不能铺满;
D、正四边形的每个内角是90°,得90°+2×135°=360°,所以能铺满.
故选D.
点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用两种正多边形拼地板,其中的一种是正八边形,则另一种正多边形的边数是(  )
A、正五边形B、正六边形C、正三角形D、正四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

36、在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下-丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.

(1)请根据下列图形,填写表中空格:

(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;
(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.
(1)请根据下列图形,填写表中空格:
精英家教网
正多边形边数 3 4 5 6 n
正多边形每个内角的度数
 
 
 
 
 
(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?
(3)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用两种正多边形拼地板,其中的一种是正八边形,则另一种正多边形的边数是(  )
A.正五边形B.正六边形C.正三角形D.正四边形

查看答案和解析>>

同步练习册答案