精英家教网 > 初中数学 > 题目详情

已知AB=AD,AC=AE,
请证明:(1)△ABE≌△ADC,
(2)∠B=∠D,请说明理由.

证明:(1)在△ABE和△ADC中,
∴△ABE≌△ADC(SAS);

(2)∵△ABE≌△ADC,
∴∠B=∠D(全等三角形对应角相等).
分析:(1)根据题目已知条件,因为∠A是公共角,直接利用“边角边”定理即可证明两三角形全等;
(2)根据全等三角形对应角相等证明即可.
点评:本题考查了全等三角形的判定和性质,本题利用∠A是公共角是判定两个三角形全等的关键,是基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,已知AB=AD,AC=AE,∠1=∠2,求证△ABC≌△ADE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,要用证△ABC≌△ADE,若已知AB=AD,AC=AE,则不需要条件(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

1、如图,已知AB=AD,AC=AE,∠1=∠2,请说明BC=DE的理由
解:∵∠1=∠2
∴∠1+
∠EAC
=∠2+
∠EAC

即∠BAC=∠DAE
在△ABC和△ADE中
AB=
AD
已知

∠BAC=∠DAE (已证)
AC
=AE(
已知

∴△ABC≌△ADE (
SAS

∴BC=DE (
全等三角形的对应边相等

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AD,AC=AE,∠BAE=∠DAC.
(1)试说明∠BAC=∠DAE;
(2)△ABC与△ADE全等吗?说说你的理由.

查看答案和解析>>

同步练习册答案