精英家教网 > 初中数学 > 题目详情
如图,一次函数y=-4x-4的图象与x轴、y轴分别交于A、C两点,抛物线y=
4
3
x2+bx+c的图象经过A、C两点,且与x轴交于点B.
(1)求抛物线的函数表达式;
(2)设抛物线的顶点为D,求四边形ABDC的面积;
(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.
(1)∵一次函数y=-4x-4的图象与x轴、y轴分别交于A、C两点,
∴A(-1,0)C(0,-4),
把A(-1,0)C(0,-4)代入y=
4
3
x2+bx+c得
4
3
-b+c=0
c=-4
,解得
b=-
8
3
c=-4

∴y=
4
3
x2-
8
3
x-4;

(2)∵y=
4
3
x2-
8
3
x-4=
4
3
(x-1)2-
16
3

∴顶点为D(1,-
16
3
),
设直线DC交x轴于点E,
由D(1,-
16
3
)C(0,-4),
易求直线CD的解析式为y=-
4
3
x-4,
易求E(-3,0),B(3,0),
S△EDB=
1
2
×6×
16
3
=16,
S△ECA=
1
2
×2×4=4,
S四边形ABDC=S△EDB-S△ECA=12;
(3)设M、N的纵坐标为a,
由B和C点的坐标可知BC所在直线的解析式为:y=
4
3
x-4

则M(
-4-a
4
,a),N(
3a+12
4
,a),
①当∠PMN=90°,MN=a+4,PM=-a,因为是等腰直角三角形,则-a=a+4则a=-2则P的横坐标为-
1
2

即P点坐标为(-
1
2
,0);
②当∠PNM=90°,PN=MN,同上,a=-2,则P的横坐标为
3×(-2)+12
4
=
3
2

即P点坐标为(
3
2
,0);
③当∠MPN=90°,作MN的中点Q,连接PQ,则PQ=-a,
又PM=PN,∴PQ⊥MN,则MN=2PQ,即:a+4=-2a,
解得:a=-
4
3

点P的横坐标为:
-4-a+3a+12
4
2
=
a+4
4
=
2
3

即P点的坐标为(
2
3
,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,平面直角坐标系中,四边形OABC是直角梯形,ABOC,OA=5,AB=10,OC=12,抛物线y=ax2+bx经过点B、C.
(1)求抛物线的函数表达式;
(2)一动点P从点A出发,沿AC以每秒2个单位长度的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长度的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,△PQC是直角三角形?
(3)点M在抛物线上,点N在抛物线对称轴上,是否存在这样的点M与点N,使以M、N、A、C为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
1
2
x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(-3,0).
(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)].

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH
同学发现两个结论:
①S△CMD:S梯形ABMC=2:3 ②数值相等关系:xC•xD=-yH
(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC中,∠A,∠B,∠C的对边分别为a,b,c,抛物线y=x2-2ax+b2交x轴于两点M,N,交y轴于点P,其中M的坐标是(a+c,0).
(1)求证:△ABC是直角三角形;
(2)若S△MNP=3S△NOP,①求cosC的值;②判断△ABC的三边长能否取一组适当的值,使三角形MND(D为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示的抛物线是二次函数y=ax2-x+a2-1的图象,那么a的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备那出一定的资金做广告.根据经验,每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y=-
x2
10
+
7
10
x+
7
10
.如果把利润看作是销售额减去成本费和广告费,试求当年利润为16万元时,广告费x为多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(
3
,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.
(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;
(2)若点P在抛物线y=ax2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;
(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,若S△OMN=9,则a的值是(  )
A.
2
3
B.-
2
3
C.
1
3
D.-
1
3

查看答案和解析>>

同步练习册答案