精英家教网 > 初中数学 > 题目详情
精英家教网如图,O是直线AB上一点,OD平分∠AOC.
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD=
13
∠AOE,请求出∠AOD和∠COE的度数.
分析:根据角平分线的性质以及余角补角的性质计算即可解答.
解答:解:(1)∠AOD=
1
2
×∠AOC=
1
2
×60°=30°,∠BOC=180°-∠AOC=180°-60°=120°•
(2)∵∠AOD和∠DOE互余,
∴∠AOE=∠AOD+∠DOE=90°,
∴∠AOD=
1
3
∠AOE=
1
3
×90°=30°,
∴∠AOC=2∠AOD=60°,
∴∠COE=90°-∠AOC=30°.
点评:本题主要考查角平分线的性质以及余角补角的性质.余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,O是直线AB上一点,OC,OD,OE是三条射线,且OC平分∠AOD,∠BOE=2∠DOE,∠COE=80°,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,O是直线AB上一点,若∠BOC=51°38′,则∠AOC=
128°22′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O是直线AB上一点,∠AOC=134°18′,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O是直线AB上的一点,∠AOC=53°17′,则∠BOC的度数是
126°43′
126°43′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O是直线AB上任意一点,OC平分∠AOB.按下列要求画图并回答问题:
(1)分别在射线OA、OC上截取线段OD、OE,且OE=2OD;
(2)连接DE;
(3)以O为顶点,画∠DOF=∠EDO,射线OF交DE于点F;
(4)写出图中∠EOF的所有余角:
∠DOF,∠EDO
∠DOF,∠EDO

查看答案和解析>>

同步练习册答案