精英家教网 > 初中数学 > 题目详情

四棱柱的侧面展开图可能是


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:利用四棱柱及其表面展开图的特点解题.注意四棱柱的侧面展开图是四个小长方形组合成的大长方形.
解答:四棱柱的侧面展开图是一个四个小长方形组合成的矩形.
故选A.
点评:本题考查了四棱柱的侧面展开图,四棱柱的侧面展开图是长方形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

研究课题:蚂蚁怎样爬最近?
研究方法:如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处,要求该蚂蚁需要爬行的最短路程的长,可将该正方体右侧面展开,由勾股定理得最短路程的长为AC1=
AC2+CC12
=
102+52
=5
5
cm.这里,我们将空间两点间最短路程问题转化为平面内两点间距离最短问题.
研究实践:(1)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处,蚂蚁需要爬行的最短路程的长为
 

(2)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.求该蚂蚁需要爬行的最短路程的长.
(3)如图5,没有上盖的圆柱盒高为10cm,底面圆的周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.请求出蚂蚁需要爬行的最短路程的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

研究课题:蚂蚁怎样爬最近?
研究方法:如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处,要求该蚂蚁需要爬行的最短路程的长,可将该正方体右侧面展开,由勾股定理得最短路程的长为AC1=数学公式cm.这里,我们将空间两点间最短路程问题转化为平面内两点间距离最短问题.
研究实践:(1)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处,蚂蚁需要爬行的最短路程的长为______.
(2)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.求该蚂蚁需要爬行的最短路程的长.
(3)如图5,没有上盖的圆柱盒高为10cm,底面圆的周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.请求出蚂蚁需要爬行的最短路程的长.

查看答案和解析>>

科目:初中数学 来源:鼓楼区二模 题型:解答题

研究课题:蚂蚁怎样爬最近?
研究方法:如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处,要求该蚂蚁需要爬行的最短路程的长,可将该正方体右侧面展开,由勾股定理得最短路程的长为AC1=
AC2+CC12
=
102+52
=5
5
cm.这里,我们将空间两点间最短路程问题转化为平面内两点间距离最短问题.
研究实践:(1)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处,蚂蚁需要爬行的最短路程的长为______.
(2)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.求该蚂蚁需要爬行的最短路程的长.
(3)如图5,没有上盖的圆柱盒高为10cm,底面圆的周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.请求出蚂蚁需要爬行的最短路程的长.
精英家教网

查看答案和解析>>

同步练习册答案