精英家教网 > 初中数学 > 题目详情
(2004•丽水)为了美化校园环境,争创绿色学校,某县教育局委托园林公司对A、B两校进行校园绿化.已知A校有如图1的阴影部分空地需铺设草坪,B校有如图2的阴影部分空地需铺设草坪.在甲、乙两地分别有同种草皮3500米2和25002出售,且售价一样.若园林公司向甲、乙两地购买草皮,其路程和运费单价表如下:
求:(1)分别求出图1、图2的阴影部分面积;
(2)请你给出一种草皮运送方案,并求出总运费;
(3)请设计总运费最省的草皮运送方案,并说明理由.表如下:
A校B校
路程(千米)运费单价(元) 路程(千米) 运费单价(元)
甲地 20 0.15 10 0.15
乙地 15 0.20 20 0.20
(注:运费单价表示每平方米草皮运送1千米所需的人民币.)
【答案】分析:(1)根据图形和题意可知SA=(92-2)×(42-2)=3600米2,SD=(62-2)×40=2400米2
(2)本小题为结论为开放题,可选择一种方案再计算总运费,计算正确均可;
(3)设甲地运往A校的草皮为x米2,总运费为y元,则甲地运往B校的草皮为(3500-x)米2,乙地运往A校的草皮为(3600-x)米2,乙地运往B校的草皮为(x-1100)米2,可得y=2.5x+11650,由x≥0,(3500-x)≥0,(3600-x)≥0,(x-1100)≥0,得到1100≤x≤3500,所以x=1100时,y有最小值=14400(元).
解答:解:(1)依题意得
SA=(92-2)×(42-2)=3600米2
SD=(62-2)×40=2400米2

(2)本小题为结论为开放题,
 A校B校
甲地15002000
乙地2100400
如:其中一种运送草皮分配方案(米2
总运费=20×0.15×1500+10×0.15×2000+15×0.2×2100+20×0.2×400
=15400(元);

(3)设甲地运往A校的草皮为x米2,总运费为y元,
由于草皮的总供求数量都是6000米2
∴甲地运往B校的草皮为(3500-x)米2
乙地运往A校的草皮为(3600-x)米2
乙地运往B校的草皮为(x-1100)米2
∴y=20×0.15x+10×0.15×(3500-x)+15×0.2×(3600-x)+20×0.2×(x-1100)
=2.5x+11650,
∵x≥0,(3500-x)≥0,(3600-x)≥0,(x-1100)≥0,
∴1100≤x≤3500,
∴当x=1100时,y有最小值.
即y=2.5×1100+11650=14400(元).
总运费最省的方案为
A校B校
甲地11002400
乙地2500
等级评定:
分数段0~45~89~1213~1617~20
等级EDCBA

点评:此题主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.

查看答案和解析>>

科目:初中数学 来源:2004年浙江省丽水市中考数学试卷(解析版) 题型:解答题

(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2004•丽水)已知⊙O1与⊙O2相切于点P,它们的半径分别为R、r.一直线绕P点旋转,与⊙O1、⊙O2分别交于点A、B(点P、B不重合),探索规律:
(1)如图1,当⊙O1与⊙O2外切时,探求与半径R、r之间的关系式,请证明你的结论;
(2)如图2,当⊙O1与⊙O2内切时,第(1)题探求的结论是否成立?为什么?

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(13)(解析版) 题型:解答题

(2004•丽水)已知⊙O1与⊙O2相切于点P,它们的半径分别为R、r.一直线绕P点旋转,与⊙O1、⊙O2分别交于点A、B(点P、B不重合),探索规律:
(1)如图1,当⊙O1与⊙O2外切时,探求与半径R、r之间的关系式,请证明你的结论;
(2)如图2,当⊙O1与⊙O2内切时,第(1)题探求的结论是否成立?为什么?

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《一元二次方程》(05)(解析版) 题型:解答题

(2004•丽水)若关于x的一元二次方程x2+(m+1)x+m+4=0两实根的平方和为2,求m的值.
解:设方程的两实根为x1,x2,那么x1+x2=m+1,x1x2=m+4.
∴(x12+(x22=( x1+x22-2x1x2=(m+1)2-2(m+4)=m2-7=2,即m2=9,
解得m=3.
答:m的值是3.
请把上述解答过程的错误或不完整之处,写在横线上,并给出正确解答.
答:错误或不完整之处有:______.
正确解答:______.

查看答案和解析>>

同步练习册答案