精英家教网 > 初中数学 > 题目详情

已知函数数学公式数学公式,若把函数y1的图象向上平移2个单位长度,就得到函数y2的图象,求a和c的值.

解:∵把函数y1的图象向上平移2个单位长度,就得到函数y2的图象,
∴y2=ax2+2,
∴a=,c=2.
分析:根据向上平移纵坐标加表示出y2,再根据对应系数相等解答.
点评:本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
2x
和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+精英家教网2)两点.
(1)求反比例函数的解析式;
(2)求反比例函数与一次函数两个交点A、B的坐标:
(3)根据函数图象,求不等式
k
2x
>2x-1的解集;
(4)在(2)的条件下,x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
k4x
和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+2,b+k)两点.
(1)求:反比例函数的解析式.
(2)如图,已知点A在第一象限,且同时在上述两函数的图象上.求点A的坐标.
(3)利用(2)的结果,问在x轴上是否存在点P,使得△AOP为等腰三角形?若存在,把符合条件的P点坐标直接写出来;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.

(1)求反比例函数的解析式;

(2)如图4,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;

(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.

 


查看答案和解析>>

同步练习册答案