精英家教网 > 初中数学 > 题目详情
8.如图,在⊙O中,AB=AC,∠ABC=70°.∠BOC=80°.

分析 首先根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠BOC=2∠A,进而可得答案.

解答 解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°-70°×2=40°,
∵点O是△ABC的外心,
∴∠BOC=2∠A=40°×2=80°,
故答案为:80°.

点评 此题主要考查了三角形的外接圆和外心、圆周角定理、等腰三角形的性质;熟练掌握等腰三角形的性质,由圆周角定理得出结果是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.甲、乙两班学生到集市上购买苹果,苹果的价格如表:
所购苹果数量不超过30千克30千克以上但不超过50千克50千克以上
每千克价格3元2.5元2元
甲班分两次购买60千克(第二次多于第一次),而乙班一次购买苹果60千克.
(1)若甲班第一次购买28千克,第二次购买32千克,则乙班比甲班少付多少元?
(2)若甲班两次共付费163元,则甲班第一次、第二次分别购买苹果多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知a是一个两位数,b是一个三位数,若把a写在b的左边得到一个五位数记为P,把a写在b的右边得到一个五位数记为H,则P-H等于(  )
A.9a-9bB.99a-bC.999a-9bD.999a-99b

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图半径为6的⊙O中,弦AB=8,则圆心O到AB的距离为2$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.发现:
如图1,在边长为a米的正方形草坪上修建一条宽为b米的道路,为求剩余草坪的面积,小明想出了两种方法.方法(1):用正方形的面积减去中间道路的面积,求得剩余草坪的面积为a2-ab;方法(2):如图2,把如图1的道路右侧阴影向左平移,与左边的阴影部分拼凑成如图3的小长方形,则求得剩余面积为a(a-b).由此我们可得出等式a2-ab=a(a-b).

思考:
如图4,在边长为a米的正方形的草坪上修建两条宽为b米的道路,小亮也仿照小明方法,求出了剩余草坪的面积.结果如下:
方法①:a2+b2-2ab;
方法②:(a-b)2.(用含a,b的代数式写出结果)
探索:
从小亮计算草坪面积的不同方法中,请你写出(a-b)2与a2+b2,ab三个代数式之间的等量关系:(a-b)2=a2+b2-2ab.
应用:
根据探索中的等量关系,解决如下问题:m2+n2=9,mn=-8,求m-n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,△AOB的边OA在x轴上,点B在第一象限,∠BAO=45°,AB=12$\sqrt{2}$,点A的坐标为(17,0).
(1)求点B的坐标;
(2)若D为线段OB的中点,E为y轴上一点,直线DE交AB于点C,交x轴于点F,其中OE=$\frac{7}{2}$,连接AD,求直线DE的解析式及四边形OACD的面积;
(3)若点P是直角坐标平面上的一个动点,是否存在点P,使以A、D、P为顶点的三角形是以AD为直角边的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.点O在△ABC内,且OA=OB=OC,若∠BAC=60°,则∠BOC的度数是120°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.a1、a2、a3、a5、a6是1、2、3、4、5、6的一个排列,若S=|a1-a2|+|a3-a4|+|a5-a6|,那么(  )
A.S一定是一个奇数B.S一定是一个偶数
C.S可能是奇数也可能是偶数D.以上说法都不对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若a2n=3,则a4n-a6n=-18;若ax=2,bx=3,则(a2b)2x=144.

查看答案和解析>>

同步练习册答案