如图,已知二次函数y=ax2+bx+c的图象与y轴正半轴的交点在(0,2)的下方,与轴的交点为(x1,0)和(2,0),且-2<x1<-1,则下列结论正确的是( )
A. | B. | C. | D. |
C.
解析试题分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
A、∵抛物线开口方向向下,∴a<0.
∵抛物线与x轴的交点是(2,0)和(x1,0),其中-2<x1<-1,
∴对称轴x=->0,
∴b>0.
∵抛物线与y轴交于正半轴,
∴c>0,
∴abc<0.故本选项错误;
B、根据图示知,当x=-1时,y>0,即a-b+c>0.故本选项错误;
C、∵把x=2代入y=ax2+bx+c得:y=4a+2b+c=0,
4a+2b=-c,
2a+b=-,
∵O<c<2,
∴2a+b+1>0.
故本选项正确;
D、∵两个根之和为正,即>1,即a<-b<0,
∴a+b<0.故本选项错误;
故选C.
考点: 二次函数图象与系数的关系.
科目:初中数学 来源: 题型:单选题
如图,已知二次函数y=x2+bx+c的图象如图所示,若y<0,则x的取值范围是
A.-1<x<4 | B.-1<x<3 |
C.x<-1或x>4 | D.x<-1或x>3 |
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为 ( )
A.y=3x2+3 | B.y=3x2-1 | C.y=3(x-4)2+3 | D.y=3(x-4)2-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com