精英家教网 > 初中数学 > 题目详情
如图,BC是⊙O的直径,AB、AD是⊙O的切线,切点分别为B、P,过C点的切线与AD交于点D,连接AO、DO.
求证:△ABO△OCD.
证明:连接OP,
∵A点切线BA和AD的交点,D点为过C点的切线和切线AD的交点,
∴△ABO≌△APO,△COD≌△POD,
∴2∠DOP+2∠AOP=180°,
∴∠AOD=90°,
∴∠AOB+∠COD=90°,
∵∠AOB+∠OAB=90°,
∴∠OAB=∠DOC,
∵∠ABO=∠OCD=90°,
∴△ABO△OCD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一条直线与反比例函数y=
k
x
的图象交于A(1,4)、B(4,n)两点,与x轴交于D点,AC⊥x轴,垂足为C.
(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标;
(2)如图乙,若点E在线段AD上运动,连接CE,作∠CEF=45°,EF交AC于F点.
①试说明△CDE△EAF;
②当△ECF为等腰三角形时,直接写出F点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC与△DEF中,给出下列条件①
AC
DF
=
BC
EF
,②∠A=∠D,③∠C=∠F,④
AC
AB
=
DF
DE
,从中任选2个条件能使△ABC与△DEF相似的概率为多少?请用树状图或列表法分析(用序号代替).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,D为△ABC边BC上一点,要使△ABD△CBA,应该具备下列条件中的(  )
A.
AC
CD
=
AB
CD
B.
AB
CD
=
BC
AD
C.
AB
CB
=
BD
AB
D.
AC
CD
=
CB
AC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,ADBC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,在四边形ABCD中,ADBC,如果要使△ABC△DCA,那么还要补充的一个条件是______.(只要求写出一个条件即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△AFG绕点旋转,AF、AG与边BC的交点分别为点D、E(点D不与点B重合,点E不与点C重合).
(1)请在图1中找出两对相似而不全等的三角形,并选择其中一对进行证明;
(2)△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D使BD=CE,求出点D的坐标,并通过计算验证BD2+CE2=DE2
(3)在旋转过程中,(2)中的等量关系BD2+CE2=DE2是否始终成立?若成立请证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,D、E为AB、AC上的点,AB<AC,DE与BC不平行,下列条件中,不能得到△ADE△ACB的是(  )
A.∠ADE=∠CB.∠B=∠AED
C.AD:AC=AE:ABD.AD:AC=DE:BC

查看答案和解析>>

同步练习册答案