精英家教网 > 初中数学 > 题目详情

【题目】如图,长青化工厂与AB两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5/(吨·千米),铁路运价为1.2/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.

求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?

2)这批产品的销售款比原料费与运输费的和多多少元?

【答案】1A地购买了400吨原料,制成运往B地的产品300吨(21887800

【解析】

解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,

依题意得:,整理得:

①×12得:13y=3900,解得:y=300

y=300代入得:x=400

方程组的解为:

答:工厂从A地购买了400吨原料,制成运往B地的产品300吨。

2)依题意得:300×8000-400×1000-15000-97200=1887800(元),

这批产品的销售款比原料费与运输费的和多1887800元。

1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,利用两个等量关系:A地到长青化工厂的公路里程×1.5x+B地到长青化工厂的公路里程×1.5y=这两次运输共支出公路运输费15000元;A地到长青化工厂的铁路里程×1.2x+B地到长青化工厂的铁路里程×1.2y=这两次运输共支出铁路运输费97200元,列出关于xy的二元一次方程组,求出方程组的解集得到xy的值,即可得到该工厂从A地购买原料的吨数以及制成运往B地的产品的吨数。

2)由第一问求出的原料吨数×每吨1000元求出原料费,再由这两次运输共支出公路运输费15000元,铁路运输费97200元,两运费相加求出运输费之和,由制成运往B地的产品的吨数×每吨8000元求出销售款,最后由这批产品的销售款-原料费-运输费的和,即可求出所求的结果。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点D为等腰直角△ABC内一点,CAD=CBD=15o,EAD延长线上的一点,CE=CA,若点MDE,DC=DM。则下列结论:①∠ADB=120°;②△ADC≌△BDC;③线段DC所在的直线垂直平分AB;④ME=BD;正确的有(

A. 1B. 4C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=ACAHBC,点EAH上一点,延长AH至点F,使FH=EH.

(1)求证:四边形EBFC是菱形;

(2)如果∠BAC=ECF,求证:ACCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACADABC的角平分线,DEABDFAC,垂足分别为EF,则下列四个结论:①AD上任意一点到点CB的距离相等;②AD上任意一点到ABAC的距离相等;③BDCDADBC④∠BDECDF.其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1 , 作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1 , 它的面积记作S2 , 照此规律作下去,则S1= , S2017=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AMBN,∠A=80°,点P是射线AM上的动点(与A不重合),BCBD分别平分∠ABP和∠PBN,交射线AM于点CD

1)求∠CBD的度数;

2)当点P运动时,∠APB∶∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.

3)当点P运动到使∠ACB=ABD时,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,DAB边上一点,以CD为边作等边CDE,使点EA在直线DC的同侧,连接AE,判断AEBC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画 ,连结AF,CF,则图中阴影部分面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知abc为三角形三边长,且方程b (x2-1)-2ax+c (x2+1)=0有两个相等的实数根. 试判断此三角形形状,说明理由.

查看答案和解析>>

同步练习册答案