精英家教网 > 初中数学 > 题目详情

如图,已知AB⊥CD,△ABD,△BCE都是等腰直角三角形,如果CD=8,BE=3,则AC等于


  1. A.
    8
  2. B.
    5
  3. C.
    3
  4. D.
    数学公式
D
分析:由于△BCE是等腰直角三角形,那么可得BC=BE=3,而DC=8,可求DB=5,又∵△ABD是等腰直角三角形,那么可知AB=5,在Rt△ABC中,利用勾股定理可求AC.
解答:∵△BCE是等腰直角三角形,
∴BC=BE=3,
又∵CD=BD+BC=8,
∴BD=5,
∵△ABD是等腰直角三角形,
∴AB=BD=5,
在Rt△ABC中,AC===
故选D.
点评:本题考查了等腰直角三角形的性质、勾股定理,解题的关键是分别求出BC、AB.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知AB∥CD,∠A=38°,则∠1=
142°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠1=50°25′,则∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知 AB∥CD,∠A=53°,则∠1的度数是
127°
127°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,那么下列结论中,正确的是(  )

查看答案和解析>>

同步练习册答案