精英家教网 > 初中数学 > 题目详情
设n(n≥2)个正整数a1,a2,a3…an,任意改变它们的顺序后,记作b1,b2,b3…bn,若P=(a1-b1)(a2-b2)(a3-b3)…(an-bn),则(  )
分析:可以利用排除法即可进行判断.
解答:解:无论n是奇数偶数,可以假设an=bn,P=0为偶数,AD不能选
现在在B和C 中选择,要让P为奇,那么必须它的n个因式都是奇数,也就是每个因式都是一个奇数与一个偶数的差,因为b1,b2…bn都是an变来的,所以原来如果是x个奇数与n-x个偶数的话,奇数与偶数的数目必须也是一样的,即x=n-x,n=2x为偶数,也就是说,P若为奇数,n必须是偶数,可以推出,n为奇数,P必须为偶数.所以B错,C正确.故选C.
点评:本题主要考查了整数的奇偶性,正确理解奇数与偶数的性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:新课标教材导学  数学七年级(第一学期) 题型:044

  四个连续自然数的积再加上1一定是一个完全平方数.完全平方数是这样一种数:它可以写成一个正整数的平方.例如:16是4的平方,81是9的平方.

我们看下面的例子:

  1·2·3·4+1=25(=52);2·3·4·5+1=121(=112);

  3·4·5·6+1=361(=192);

  如果我们设四个连续自然数中最小的一个是n,那么这四个连续自然数的积加上1的和可以表示为n(n+1)(n+2)(n+3)+1,它的结果是n2+3n+1的平方,因为n为自然数,所以n2+3n+1也是一个自然数,即:

  n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.①

  学到整式的乘法时,我们还可以证明这个等式成立.

  当n取任意自然数代入①,不仅可以知道n(n+l)(n+2)(n+3)+1是一个完全平方数,还可以知道它是什么数的平方.

  你可以算一算:20·21·22·23+1=?,50·51·52·53+1=?

  同学们,根据同样的道理,四个连续偶数(或奇数)的积再加上16是一个完全平方数吗?请你试一试.

查看答案和解析>>

同步练习册答案