精英家教网 > 初中数学 > 题目详情

如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四边形ABCD是平行四边形,下列结论中错误的有
①△ACE以点A为旋转中心,逆时针方向旋转90°后与△ADB重合,
②△ACB以点A为旋转中心,顺时针方向旋转270°后与△DAC重合,
③沿AE所在直线折叠后,△ACE与△ADE重合,
④沿AD所在直线折叠后,△ADB与△ADE重合,
⑤△ACE的面积等于△ABE的面积.


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
B
分析:由△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,易证得△ACE≌△ADB,即可得①正确;又由四边形ABCD是平行四边形,易证得△EAC≌△EAD,即可得△ACE≌△ADB≌△ADE,即可判定③④正确;由平行四边形的中心对称性,可得②错误,又由S△ACE=S△ADB=AD×BH=AD•AC=AC2,S△ABE=AE•AB=AB2,AB>AC,即可判定②错误.继而求得答案.
解答:①∵△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,
∴AE=AB,AC=AD,∠EAC=∠BAD,
在△ACE和△ADB中,

∴△ACE≌△ADB(SAS),
∴△ACE以点A为旋转中心,逆时针方向旋转90°(旋转角为∠EAB=90°)后与△ADB重合;
故①正确;
②∵平行四边形是中心对称图形,
∴要想使△ACB和△DAC重合,△ACB应该以对角线的交点为旋转中心,顺时针旋转180°,即可与△DAC重合,
故②错误;
③∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAC=∠ACD=45°,
∴∠EAC=∠BAC+∠CAD=135°,
∴∠EAD=360°-∠EAC-∠CAD=135°,
∴∠EAC=∠EAD,
在△EAC和△EAD中,

∴△EAC≌△EAD(SAS),
∴沿AE所在直线折叠后,△ACE与△ADE重合;
故③正确;
④∵由①③,可得△ADB≌△ADE,
∴沿AD所在直线折叠后,△ADB与△ADE重合,
故④正确;
⑤过B作BH⊥AD,交DA的延长线于H,
∵四边形ABCD是平行四边形,
∴BH=AC,
∵△ACE≌△ADB,
∴S△ACE=S△ADB=AD×BH=AD•AC=AC2
∵S△ABE=AE•AB=AB2,AB>AC,
∴S△ABE>S△ACE
故⑤错误.
故选B.
点评:此题考查了等腰直角三角形的性质、全等三角形的判定与性质、平行四边形的性质、折叠的性质以及旋转的性质.此题综合性较强,难度较大,注意数形结合思想的应用,注意证得△ACE≌△ADB≌△ADE是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ACD和△AEB都是等腰直角三角形,∠EAB=∠CAD=90°,下列五个结论:①EC=BD;②EC⊥BD;③S四边形EBCD=
12
EC•BD;④S△ADE=S△ABC;⑤△EBF∽△DCF.其中正确的有
 

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四边形ABCD是平行四边形,下列结论中错误的有(  )
①△ACE以点A为旋转中心,逆时针方向旋转90°后与△ADB重合,
②△ACB以点A为旋转中心,顺时针方向旋转270°后与△DAC重合,
③沿AE所在直线折叠后,△ACE与△ADE重合,
④沿AD所在直线折叠后,△ADB与△ADE重合,
⑤△ACE的面积等于△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

31、如图,△ACD和△ABE都是直角等腰三角形,∠DAC和∠EAB是直角,连接CE.
(1)在图上画出△ACE以点A为旋转中心,顺时针旋转90°后得到的△AC'E'(只需作出图形;不写画法);
(2)猜想EC与C'E'的位置有什么关系,并证明你的结论.

查看答案和解析>>

同步练习册答案