精英家教网 > 初中数学 > 题目详情
(2013•燕山区一模)如图,点P是⊙O的弦AB上任一点(与A,B均不重合),点C在⊙O上,PC⊥OP,已知AB=8,设BP=x,PC2=y,y与x之间的函数图象大致是(  )
分析:延长CP交⊙O于点D,根据PC⊥OP,则PC=PD,由相交弦定理可得:PC2=PA•PB,代入数据即可得出PC的长.
解答:解:延长CP交⊙O于点D,
∵PC⊥OP,
∴PC=PD,
∵PC•PD=PA•PB,
∴PC2=PA•PB,
∵AB=8,BP=x,PC2=y,
∴AP=8-x,
则y=x(8-x)=-x2+8x=-(x-4)2+16.
故该函数图象为开口向下的抛物线,且顶点为(4,16).
故选A.
点评:本题考查了动点问题的函数图象已及相交弦定理与垂径定理,难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•燕山区一模)若实数a与-3互为相反数,则a的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•燕山区一模)春节假期,全国收费公路7座以下小型客车实行免费通行.据交通运输部统计,春节期间,全国收费公路(除四川、西藏、海南外)共免收通行费846 000 000元.把846 000 000用科学记数法表示应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•燕山区一模)如图,直线y=2x-1与反比例函数y=
kx
的图象交于A,B两点,与x轴交于C点,已知点A的坐标为(-1,m).
(1)求反比例函数的解析式;
(2)若P是x轴上一点,且满足△PAC的面积是6,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•燕山区一模)阅读下列材料:
问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°. 判断线段BE、EF、FD之间的数量关系,并说明理由.

小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.
请你参考小明同学的思路,解决下列问题:
(1)图(1)中线段BE、EF、FD之间的数量关系是
EF=BE+DF
EF=BE+DF

(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,则AG的长为
5
5
,△EFC的周长为
10
10

(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为
15
15

查看答案和解析>>

同步练习册答案