某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;
(3)若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.
分析:(1)本题的等量关系是:两种电视的台数和=50台,买两种电视花去的费用=9万元.然后分进的两种电视是甲乙,乙丙,甲丙三种情况进行讨论.求出正确的方案;
(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案;
(3)本题可先设两种电视的数量为未知数,然后根据三种电视的总量为50台,表示出另一种电视的数量,然后根据购进电视的费用总和为9万元,得出所设的两种电视的二元一次方程,然后根据自变量的取值范围,得出符合条件的方案.
解答:解:(1)设购进甲种x台,乙种y台.
则有:
,
解得
;
设购进乙种a台,丙种b台.
则有:
,
解得
;(不合题意,舍去此方案)
设购进甲种c台,丙种e台.
则有:
,
解得:
.
通过列方程组解得有以下两种方案成立:
①甲、乙两种型号的电视机各购25台.
②甲种型号的电视机购35台,丙种型号的电视机购15台;
(2)方案①获利为:25×150+25×200=8750(元);
方案②获利为:35×150+15×250=9000(元).
所以为使销售时获利最多,应选择第②种进货方案;
(3)设购进甲种电视x台,乙种电视y台,则购进丙种电视的数量为:z=(50-x-y)台.
1500x+2100y+2500(50-x-y)=90000,
化简整理,得5x+2y=175.
又因为0<x、y、z<50,且均为整数,
所以上述二元一次方程只有四组解:
x=27,y=20,z=3;
x=29,y=15,z=6;
x=31,y=10,z=9;
x=33,y=5,z=12.
因此,有四种进货方案:
1、购进甲种电视27台,乙种电视20台,丙种电视3台,
2、购进甲种电视29台,乙种电视15台,丙种电视6台,
3、购进甲种电视31台,乙种电视10台,丙种电视9台,
4、购进甲种电视33台,乙种电视5台,丙种电视12台.
点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:两种电视的台数和=50台,买两种电视花去的费用=9万元.列出方程组,再求解.要注意本题中自变量的取值范围.