精英家教网 > 初中数学 > 题目详情

【题目】已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).

(1)求证:方程有两个不相等的实数根;

(2)若方程的两个实数根都是整数,求k的值.

【答案】(1)证明见解析(2)1或﹣1

【解析】

(1)根据一元二次方程的定义得k0,再计算判别式得到△=(2k1)2,然后根据非负数的性质,即k的取值得到△>0,则可根据判别式的意义得到结论;(2)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.

(1)证明:△=[﹣(4k+1)]2﹣4k(3k+3)=(2k﹣1)2

k为整数,

∴(2k﹣1)20,即△>0.

方程有两个不相等的实数根.

(2)解:方程kx2﹣(4k+1)x+3k+3=0为一元二次方程,

∴k≠0.

∵kx2﹣(4k+1)x+3k+3=0,即[kx﹣(k+1)](x﹣3)=0,

∴x1=3,

方程的两个实数根都是整数,且k为整数,

k=1或﹣1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q; (i)当点P与A、B两点不重合时,求 的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y= (k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABC中ABC与ACB的平分线交于点O根据下列条件求出BOC的度数

1已知ABC+ACB=100°BOC=

2已知A=90°BOC的度数

3从上述计算中你能发现BOC与A的关系吗?请直接写出B0C与A的关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).

(1)求三角形ABC的面积;

(2)如果三角形ABC的三个顶点的纵坐标不变,横坐标增加3个单位长度,得到三角形A1B1C1,试在图中画出三角形A1B1C1,并写出点A1,B1,C1的坐标;

(3)(2)中三角形A1B1C1与三角形ABC的大小、形状有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是(
A.一直增大
B.一直减小
C.先增大后减小
D.先减小后增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在书写艺术字时,常常运用画平行线段这种基本作图方法,此图是在书写字“M”:

(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;

(2)EFA′B′有何位置关系?CC′DH有何位置关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.

(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?

(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?

查看答案和解析>>

同步练习册答案