精英家教网 > 初中数学 > 题目详情
阅读材料:一般地,如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2.那么x1+x2=-
b
a
x1x2=
c
a
.我们把一元二次方程的根与系数关系的这个结论称为“韦达定理”.根据这个结论解决下面问题:
已知方程4x2-2x-1=0的两个根为x1,x2,不解方程,求下列代数式的值:
(1)
1
x1
+
1
x2

(2)x12+x22
(3)
x2
x1
+
x1
x2
分析:根据根与系数的关系得到x1+x2=
1
2
,x1•x2=-
1
4

(1)先把原式通分得到原式=
x1+x2
x1x2
,然后利用整体代入的思想计算;
(2)先把原式变形得到原式=(x1+x22-2x1•x2,然后利用整体代入的思想计算;
(3)先把原式通分,然后利用整体代入的思想计算.
解答:解:根据题意得x1+x2=
1
2
,x1•x2=-
1
4

(1)原式=
x1+x2
x1x2
=
1
2
-
1
4
=-2;
(2)原式=(x1+x22-2x1•x2=(
1
2
2-2×(-
1
4
)=
3
4

(3)原式=
x12+x22  
x1x2
=
3
4
-
1
4
=-3.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读材料:
①一般地,n个相同的因数a相乘:记为an,如23=8,此时,指数3叫做以2为底8的对数,记为log28log=3(即log28=3).  
②一般地,若an=b(a>0且a≠1,b>0),则指数n叫做以a为底b的对数,记为logab(即logab=n),如34=81,则指数4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算下列各对数的值:
log24=
2
2
;   log216=
4
4
;    log264=
6
6

(2)观察(1)题中的三数4、16、64之间存在的关系式是
4×16=64
4×16=64
,那么log24、log216、log264存在的关系式是
log24+log216=log264
log24+log216=log264

(3)由(2)题的结果,你能归纳出一个一般性的结论吗?
logaM+logaN=
logaMN
logaMN
  (a>0且a≠1,M>0,N>0)
(4)请你运用幂的运算法则am•an=am+n以及上述中对数的定义证明(3)中你所归纳的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读材料:
①一般地,n个相同的因数a相乘:
a•a…•a
n个
记为an,如2•2•2=23=8,此时,3叫做以2为底8的对数,记为log28 (即log28=log223=3).  
②一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=logaan=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=log334=4).
(1)计算下列各对数的值:
log24=
2
2
;log216=
4
4
;log264=
6
6

(2)观察(1)题中的三数,4,16,64之间存在怎样的关系式
4×16=64
4×16=64

log24,log216,log264又存在怎样的关系式.
log24+log216=log264
log24+log216=log264

(3)由(2)题猜想 logaM+logaN=
logaMN
logaMN
(a>0且a≠1,M>0,N>0),并结合幂的运算法则:am•an=am+n加以证明.

查看答案和解析>>

科目:初中数学 来源:2015届重庆沙坪坝五校八年级上学期期中联考数学试卷(解析版) 题型:解答题

请阅读材料:①一般地,n个相同的因数a相乘:记为,如2·2·2=23=8,此时,3叫做以2为底8的对数,记为 (即==3).②一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即==n),如34=81,则4叫做以3为底81的对数,记为(即==4).

(1)计算下列各对数的值:

4= _____________________________ ;16=__________________________ ;

64=____________________________.

(2)观察(1)题中的三数,4,16,64之间存在怎样的关系式                                    

4,16,64又存在怎样的关系式.                                     

(3)由(2)题猜想 M+N=_____________________(a>0且a≠1,M>0,N>0),并结合幂的运算法则:am•an=am+n加以证明.

 

查看答案和解析>>

科目:初中数学 来源:2015届重庆沙坪坝五校八年级上学期期中联考数学试卷(解析版) 题型:解答题

请阅读材料:①一般地,n个相同的因数a相乘:记为,如2·2·2=23=8,此时,3叫做以2为底8的对数,记为 (即==3).②一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即==n),如34=81,则4叫做以3为底81的对数,记为(即==4).

(1)计算下列各对数的值:

4= _____________________________ ;16=__________________________ ;

64=____________________________.

(2)观察(1)题中的三数,4,16,64之间存在怎样的关系式                                    

4,16,64又存在怎样的关系式.                                     

(3)由(2)题猜想 M+N=_____________________(a>0且a≠1,M>0,N>0),并结合幂的运算法则:am•an=am+n加以证明.

 

查看答案和解析>>

科目:初中数学 来源:2015届重庆沙坪坝五校八年级上学期期中联考数学试卷(解析版) 题型:解答题

请阅读材料:①一般地,n个相同的因数a相乘:记为,如2·2·2=23=8,此时,3叫做以2为底8的对数,记为 (即==3).②一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即==n),如34=81,则4叫做以3为底81的对数,记为(即==4).

(1)计算下列各对数的值:

4= _____________________________ ;16=__________________________ ;

64=____________________________.

(2)观察(1)题中的三数,4,16,64之间存在怎样的关系式                                    

4,16,64又存在怎样的关系式.                                     

(3)由(2)题猜想 M+N=_____________________(a>0且a≠1,M>0,N>0),并结合幂的运算法则:am•an=am+n加以证明.

 

查看答案和解析>>

同步练习册答案