精英家教网 > 初中数学 > 题目详情

(14分)如图一,是一张放在平面直角坐标系中的矩形纸片,为原点,点轴的正半轴上,点轴的正半轴上,

(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;

(2)如图二,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点的平行线交于点.求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?

(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标.

 

【答案】

解:[来源:学#科#网Z#X#X#K]

   (1)依题意:Rt≌Rt

        在Rt中,

        ∴   ∴

        ∴   ……………………………………………(2分)

        在Rt中,   又∵

        ∴    解得:

        ∴  ……………………………………………(4分)

   (2)如图(1)

        ∵

        ∴

        ∴   又

        ∴    ∴

        ∵

        ∴ 四边形为矩形

        ∴  …………………(7分)

        ∴) ……………(8分)

        ∴ 当时,有最大值  ………………(9分)

  

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3.
(1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标;
(2)若过点D,E的抛物线与x轴相交于点F(-5,0),求抛物线的解析式和对称轴方程;
(3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由.
(4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA、OC是方程
2
x
=
9-x
10
的两个根(OA>OC),在AB边上取一点D,将纸片沿CD翻折,使点B恰好落在OA边上的点E处.
(1)求OA、OC的长;
(2)求D、E两点的坐标;
(3)若线段CE上有一动点P自C点沿CE方向向E点匀速运动(点P运动到点E后停止运动),运动的速度为每秒1个单位长度,设运动的时间为t秒,过P点作ED的平行线交CD于点M.是否存在这样的t 值,使以C、E、M为顶点的三角形为等腰三角形?若存在,请直接写出t值及相应的时刻点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,
(1)求过E点的反比例函数解析式;
(2)求折痕AD的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是
(0,5)
(0,5)

查看答案和解析>>

同步练习册答案