精英家教网 > 初中数学 > 题目详情
(2013•日照)问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为
2
2
2
2

(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;
(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.
解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P
此时PA+PB最小,且等于AE.
作直径AC′,连接C′E.
根据垂径定理得弧BD=弧DE.
∵∠ACD=30°,
∴∠AOD=60°,∠DOE=30°,
∴∠AOE=90°,
∴∠C′AE=45°,
又AC′为圆的直径,∴∠AEC′=90°,
∴∠C′=∠C′AE=45°,
∴C′E=AE=
2
2
AC′=2
2

即AP+BP的最小值是2
2

故答案为:2
2


(2)如图,在斜边AC上截取AB′=AB,连结BB′.
∵AD平分∠BAC,
∴点B与点B′关于直线AD对称.
过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,
则线段B′F的长即为所求.(点到直线的距离最短)                                    
在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,
∴B′F=AB′•sin45°=AB•sin45°=10×
2
2
=5
2

∴BE+EF的最小值为5
2
点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•日照)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为
1
3
;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为
2
5

(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?
(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•日照)已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1-x2|=8.
(1)求抛物线的解析式及顶点D的坐标;
(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似(除去全等这一情况)?若存在,求出P点的坐标;若不存在,说明理由;
(3)如图(b),点Q为
EBF
上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH•AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案