精英家教网 > 初中数学 > 题目详情

如图,△ABC与△EDF中,点A、D、B、E在一直线上,∠A=∠E,AC=EF,在下列条件中随机抽取一个作为补充条件:①∠C=∠F,②AD=BE,③BC=DF,④BC∥DF,能使△ABC≌△EDF的概率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    1
C
分析:首先根据三角形全等的判定方法可以确定能使△ABC≌△EDF的条件有①,②,④,然后再确定概率.
解答:已知中知道∠A=∠E,AC=EF,
下列四个条件中能使△ABC≌△EDF的条件有①,②,④,
故概率为:
故选:C.
点评:此题主要考查了全等三角形的判定,以及概率公式,关键是熟练掌握三角形全等的判定定理以及概率公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△ADC关于直线AC对称,连接BD,若已知四边形ABCD的面积是125,AC=25,则BD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC与△ADE是两个大小不同的等腰直角三角形,B、C、E在同一条直线上,连接CD.
(1)证明:△ABE≌△ACD;
(2)CD与BE是否垂直?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为(  )
A、
3
:1
B、
2
:1
C、5:3
D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,△ABC与△A′B′C′关于直线MN对称,△A′B′C′与△A″B″C″关于直线EF对称.
(1)画出△ABC和直线EF;
(2)若直线MN和EF相交于点O,直线MN、EF所夹的锐角设为α,猜想∠BOB″与α之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案