精英家教网 > 初中数学 > 题目详情
如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,则BC=   
【答案】分析:首先由直角三角形ABD中,∠BAD=30°,得BD=AD=6,则由已知得AC=BD=6,再由勾股定理求出AB,然后由直角三角形ACB运用勾股定理求出BC.
解答:解:已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,
∴BD=AD=×12=6,
∴AC=BD=6,
在直角三角形ABD中,根据勾股定理得:
AB===6
在直角三角形ACB中,根据勾股定理得:
BC===6
故答案为:6
点评:此题考查的知识点是解直角三角形,关键是运用直角三角形中30°的性质和勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,已知∠ABD=∠BDA=∠ADC=∠DCA=75度.请你写出由已知条件能够推出的四个有关线段关系的正确结论(注意:不添加任何字母和辅助线,线段关系仅限于垂直、相等)
AD平分线段BC
;②
BD=CD
;③
AB=AD=AC
;④
AD⊥BC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江门模拟)如图,已知△ABD和△ACE都是等边三角形,CD、BE相交于点F.
(1)求证:△ABE≌△ADC;
(2)△ABE可由△ADC经过怎样的旋转变换得到?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABD沿BD平移到了△FCE的位置,BE=10,CD=4,则平移的距离是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠ABD=∠ACD=90°,∠CBD=∠BCD,求证:AD平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABD和△ACE,AD=AE,∠1=∠2,要判定△ABD≌△ACE,还需要添加一个条件,这个条件可以是
AB=AC
AB=AC

查看答案和解析>>

同步练习册答案