精英家教网 > 初中数学 > 题目详情
如图,二次函数的图象经过点D,与x轴交于A、B两点。

(1)求c的值;
(2)如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;
(3)设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由。(图②供选用)
解:(1)∵抛物线经过点D(

∴c=6。
(2)过点D、B点分别作AC的垂线,垂足分别为E、F,设AC与BD交点为M, 
∵AC 将四边形ABCD的面积二等分,即:S△ABC=S△ADC
∴DE=BF
又∵∠DME=∠BMF,∠DEM=∠BFE
∴△DEM≌△BFM
∴DM=BM
即AC平分BD
∵c=6
∵抛物线为

∵M是BD的中点

设AC的解析式为y=kx+b,经过A、M点

解得
∴直线AC的解析式为
(3)存在.设抛物线顶点为N(0,6),在Rt△AQN中,易得AN=,于是以A点为圆心,AB=为半径作圆与抛物线在x上方一定有交点Q,连接AQ,再作∠QAB平分线AP交抛物线于P,连接BP、PQ,此时由“边角边”易得△AQP≌△ABP。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.精英家教网
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

科目:初中数学 来源:2011-2012年北京市华夏女子中学九年级第一学期期中考试数学卷 题型:解答题

如图是二次函数的图象,其顶点坐标为M(1,-4).

【小题1】(1)求出图象与轴的交点A,B的坐标;
【小题2】(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;
【小题3】(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年上海市中考数学模拟试卷(二)(解析版) 题型:解答题

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

科目:初中数学 来源:2011年上海市浦东新区中考数学二模试卷(解析版) 题型:解答题

如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.
(1)求点P的坐标;
(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;
(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

查看答案和解析>>

同步练习册答案