精英家教网 > 初中数学 > 题目详情
(2012•安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是(  )
分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
解答:解:①如图:

因为CD=
22+42
=2
5

点D是斜边AB的中点,
所以AB=2CD=4
5


②如图:

因为CE=
32+42
=5,
点E是斜边AB的中点,
所以AB=2CE=10,

原直角三角形纸片的斜边长是10或4
5

故选C.
点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=
60
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安徽)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,
(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:
m n m+n f
1 2 3 2
1 3 4 3
2 3 5 4
2 5 7
3 4 7
猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是
f=m+n-1
f=m+n-1
(不需要证明);
(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安徽)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.
(1)求线段BG的长;
(2)求证:DG平分∠EDF;
(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.

查看答案和解析>>

同步练习册答案