精英家教网 > 初中数学 > 题目详情
已知二次函数的图象在坐标原点为O的直角坐标系中,
(1)设这个二次函数的图象与x轴的交点是A、B(B在点A右边),与y轴的交点是C,求A、B、C的坐标;
(2)求证:△OAC∽△OCB.
【答案】分析:(1)利用图象与x轴相交y=0,求出图象与x轴交点坐标即可,以及与y轴交点坐标即可.
(2)利用各点坐标得出AO=1,BO=4,OC=2,再利用相似三角形的判定求出即可.
解答:解:(1)把(x,0)代入
得:,解得:A(-1,0),B(4,0),
把(0,y)代入解得:C(0,2),
(2)由A(-1,0),B(4,0),C(0,2)可得,
AO=1,BO=4,OC=2,

又∵∠AOC=∠COB
∴△AOC∽△COB.
点评:此题主要考查了图象与坐标轴交点坐标求法以及相似三角形的判定,求出AO=1,BO=4,OC=2长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、已知二次函数的图象经过点(0,-2),且当x=1时函数有最小值-3.
(1)求这个二次函数的解析式;
(2)如果点(-2,y1),(1,y2)和(3,y3)都在该函数图象上,试比较y1,y2,y3的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常德)如图,已知二次函数的图象过点A(0,-3),B(
3
3
),对称轴为直线x=-
1
2
,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过点(0,3),且顶点坐标为(1,4).
(1)求这个函数关系式;
(2)在直角坐标系中画出它的图象;
(3)当x
3或-1
3或-1
时,函数值为0;当x
<1
<1
时,y随x的增大而增大,当x
>1
>1
时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数数学公式的图象在坐标原点为O的直角坐标系中,
(1)设这个二次函数的图象与x轴的交点是A、B(B在点A右边),与y轴的交点是C,求A、B、C的坐标;
(2)求证:△OAC∽△OCB.

查看答案和解析>>

同步练习册答案